
Encapsulation, delegation and 
inheritance in object-oriented 
languages 
by Mario Wolcz ko 

For the reuse of sofhuare to become routine, it 
is essential that all modules have well defined 
interfaces and that all users of these modules 
respect these interfaces. This paper examines 
the interfaces in object-oriented programs. It 
uses the notion of delegation, which can be 
thought of as  underlying all inheritance 
mechanisms, to provide a framework for the 
examination of encapsulation mechanisms in 
object-oriented languages. Using delegation, 
the encapsulation mechanisms in class-based 
languages are reviewed, and suggestions are 
made as  to how they might be improved. 

1 Introduction 

When building large systems, it is important that the 
designer of each component is able to specify the behav- 
iour of that component independently of i ts  implementa- 
tion. This has several benefits. 

0 Once a component has been specified, it can be imple- 
mented independently of other components. 
0 Implementation at one design level can proceed inde. 
pendently of design and implementation at lower levels. 
0 The implementation of a component can be changed 
at any time, so long as  it meets its specification. 
0 A readily available component can be used when it is 
clear that it meets the required specification. 

In an object-oriented language, the components are object 
definitions. One of the main advantages claimed for 
object-oriented programming is that a designer can reuse 
existing object definitions readily. Furthermore, it is 
claimed that, since object definitions are modular, you can 
switch between alternative implementations of an object 
with minimal fuss. For this to be true, it is important that 
there is a clear understanding between the provider of an 
object definition and a potential user as  to exactly what is 
part of the specification, and therefore invariant between 
implementations, and what is part of the implementation 
and therefore subject to change. 

Clearly, there are many ways of communicating this dis- 
tinction to a user. The most common technique is that of 
informal comment, either embedded in the program text 
or as a separate user guide. However, comments suffer 
from the usual problems of being inaccurate, 

unmaintained, unchecked and unenforced. The other 
extreme is represented by a formal specification in a lan- 
guage that can describe the semantics of a program at the 
required level of detail, while still retaining precision. To 
check that a module met its specification, and that user’s 
code did not violate the assumptions of the module, would 
require the programmer and user to conduct formal 
proofs. This approach is difficult and time-consuming, and 
is not widely accepted in the industry. An intermediate 
approach is to provide language constructs, in which the 
programmer can make some assertions about the behav- 
iour of the module, and which can be checked and 
enforced by the language system. 

To this end, various language constructs have been p ro  
posed that attempt to distinguish the ‘public’ features of an 
object, which are necessarily part of the specification, from 
the ‘private‘ features. Such constructs are used to encap 
sulate an object, hiding its private features so that they are 
externally invisible. This acts to document, in a formal way, 
which features are visible and to enforce the invisibility of 
private features. The use of such mechanisms ensures 
than a programmer can readily change the implementa- 
tion of an object and be certain that users of that object 
are not relying on a private feature. It cannot, of course, 
guarantee that the new implementation of a feature is 
entirely compatible with a previous version, or that the user 
is not relying on an artefact of the previous implementa- 
tion; only formal specifications and proofs can do this. 

The practical benefit of a good encapsulation mecha- 
nism is that certain changes can be made in the know- 
ledge that no existing programs will break. The sorts of 
changes that we would wish to include in this category are 

0 factoring common code into a shared procedure. 
0 adding, removing or renaming an instance variable 
(stored attribute) or a private method. 
0 changing the inheritance structure. 
0 
more parts related by inheritance. 

To our knowledge, no existing object-oriented language 
enables a programmer to make all of these kinds of 
changes without potentially compromising existing code. 

In this paper, we examine the issues of encapsulation in 
object-oriented languages and attempt to provide a frame- 
work in which these issues can be discussed. We suggest 
language constructs and structuring principles that can be 
used to provide a complete set of encapsulation facilities. 

dividing a definition of object behaviour into two or 

Software Engineering Journal March 1992 95 



\ 
customer 

b 
I 

etchunproj 
mercuqe, nirh S 

$ 

stream S 

Fig. 1 Example of delegation 

2 Encapsulation boundaries 
By definition, every object-oriented system has at least one 
encapsulation boundary; that between the insides and out- 
sides of objects. It is now widely accepted that for a 
system to be called object-oriented, its objects must main- 
tain control over access to their private state. The instance 
variables of an object are only accessible within the 
methods associated with that object and can be manipu- 
lated only in response to messages to that object 

We can also identify another aspect of encapsulation at 
the object boundary. Some of an object's methods may be 
present purely as a structuring mechanism to provide a 
separate implementation of a facility used by other 
methods. This is a technique common to conventional 
programming languages, and is used to improve the 
modularity and readability of code. For example, in a con- 
ventional language, an algorithm may be broken into 
separate procedures with each procedure performing a 
single logical task. The procedures need not be useful in 
themselves but only as part of the implementation of the 
whole algorithm, and therefore should not be part of the 
external interface. Another motivation is that of code- 
sharing; rather than having two identical or near-identical 
pieces of code in a program, it is useful to create a pro- 
cedure, possibly parameterised, and invoke it where neces- 
sary. In an object-oriented language, methods play the role 
of procedures, and therefore an object may possess 
methods simply to make the implementations of other 
methods cleaner. These ancillary methods, however, 
should never be invoked from external objects. For 
example, an object representing a collection may have a 
basic sorting method, which should only be invoked by 
interface methods that perform essential initialisation (e.g. 
setting up the direction of the sort or the message to be 
used to compare two keys). 

96 

A third encapsulation boundary is provided by the struc- 
tures that define shared object behaviour, usually known 
as classes. Most object-oriented languages organise 
objects into classes. A class defines the structure and 
behaviour of all its instances. It lists the instance variables 
each instance is to possess and defines the responses to 
messages each instance may receive, usually by associ- 
ating a method with each kind of message. You might 
expect some methods to be only visible within the same 
class, hidden from other classes. Encapsulation of classes 
is complicated by inheritance, another common feature of 
object-oriented languages. Each class may have one or 
more parent classes, from which it inherits both structure 
and behaviour. An instance of the child class responds to 
all the messages for which an ancestor class defines a 
response, together with any others mentioned locally. 
Should more than one class define a response to a 
message, the 'nearest' candidate definition in the class 
hierarchy is chosen. Different languages, especially those 
with multiple inheritance, have different algorithms for 
choosing the nearest method. 

Inheritance means that we must distinguish the bound- 
aries between a class and its parent(s), and between a 
class and its children. Clearly, when a class is created, its 
parents must be known, and the specifications of its 
parents can be checked against a specification of what the 
class requires. However, in general, the children of a class 
are not known when it is designed and implemented. The 
designer must choose which aspects of the class are to be 
made part of the interface visible to children and which are 
to be private. This decision is almost independent of the 
other decisions; features may be visible to child classes 
that are not 'public' features of the object, or indeed acces- 
sible to other objects of the same class or the class object 
itself. 

Some attempts have been made at identifying the 
encapsulation boundaries in object-oriented languages 
and at providing language constructs to support them. For 
example, Snyder [l] provides an excellent discussion of 
encapsulation in the presence of inheritance. However, no 
attempt has been made to place these discussions in a 
more general framework, and some issues have not been 
covered at all. This paper describes the issues and s u g  
gests possible solutions, using delegation as a framework. 

The concepts of class and inheritance are familiar to 
most object-oriented programmers. However, there is 
much less awareness of an alternative organisational 
scheme that is conceptually simpler and more flexible; 
delegation [2]. The principal difference between class- 
based inheritance and delegation is that the former relates 
whole classes by inheritance, whereas the latter relates 
individual objects. This enables each object to make its 
own decision as  to when and where it delegates, allowing 
the pattem of inheritance to vary dynamically. In contrast, 
the inheritance pattern in a class-based system is fixed 
when the classes are created. This makes delegation a 
more flexible and powerful way of organising objects, in 
that it can be used to model class.based inheritance, 
whereas the converse is not true [2]*. 

Although Stein [3] claimed that inheritance and delegation are 
in some sense equivalent, she assumed that classes were first- 
class objects and could respond to messages. This is not the 
case in many objert-oriented languages. 

Software Engineering Journal March 1992 



Fig. 2 
On the left is a class hierarchy and an instance of one class. The instance comprises parts that are defined by each class in the hierarchy. On the right is 
a similar structure, but using explicit subobjects and delegation. The classes on the right are not related by inheritance. 

Class hierarchy and instance 

3 Delegation 

In a delegation-based system, there are two kinds of mes- 
sages. The first kind is present in all object-oriented 
systems and simply involves sending a message from one 
object to another, possibly passing some parameters. In 
the second kind, one object delegates a task to another. 
As in real life, delegation implies shared responsibility for 
the completion of a task. When a manager delegates a 
task to a subordinate, the subordinate is expected to 
consult the manager should help be required. Similarly, 
when one object delegates a message to another, it 
expects to be consulted should further information be 
required. 

In practice, the effect is simple; when object A delegates 
a message to object B, a reference to A is implicitly 
passed to B. Object B knows object A as  its customer or 
client. For example, consider an object that wishes to print 
a representation of itself on a text stream (Fig. 1). It may 
not know how to manipulate the stream directly but could 
delegate the task to a 'printing' object that interfaced to the 
stream. However, the printing object might need extra 
information to complete its task, such as a string rep- 
resenting the internal state of the object to be printed. To 
do this, it sends appropriate messages back to the cus- 
tomer object. The task of assembling these strings and 
sending them to the stream has been effectively delegated 
to the printing object, and the manager simply has to 
provide the extra information specific to the task at hand, 
without having to be aware of the finer details of printing. 
Using delegation has advantages over passsing the infor- 
mation as extra arguments; it loosens the coupling 
between objects, making the interface more flexible, and it 
allows the extra information to be generated on demand. 

Of course, a delegation-like style of programming can 
be employed in a class-based language, by passing the 
reference to the customer explicitly with each message. 
However, there is a deeper connection, which is explored 
below. 

Software Engineering Journal March 1992 

3.1 
class-based inheritance 

The relationship between delegation and 

In a class-based system, the methods of a parent class can 
be invoked in one of two ways; either by being the 
'nearest' definition of a method in the class hierarchy to 
the actual class of an obj- or by being invoked explicitiy 
by 'nearer' methods. In Smalltalk, for example, the latter 
occurs when a method in a parent is invoked using the 
super keyword. However, in the method invoked by the 
send to super, self still refers to the same object and mes- 
sages to self are looked up in the class of self. There is a 
direct analogy here with delegation; we can consider each 
ancestor class as defining a subordinate object and invoca- 
tions of methods via super delegate tasks to these sub- 
ordinates. Self plays the role of the customer. This is 
illustrated in Fig. 2; on the left an instance of class C4 
possesses the instance variables defined by C4 and its 
ancestors CB and CC. On the right, an equivalent set-up is 
shown using three objects, which are instances of classes 
CA', C B  and CC'; these classes are not related by 
inheritance. 

In this analogy, a method that is inherited by one class 
from another can be considered as  a default delegation, 
for which most languages do not require an explicit defini- 
tion. This is shown in Fig. 3, where a fragment of Smalltalk 
is compared with an equivalent fragment in a delegation- 
like language. 

Using this analogy, we can think of class-based inheri- 
tance as a technique for building systems where the pat- 
terns of inheritance can be determined statically. A 
class-based system uses this static information to build a 
more efficient implementation; it can statically bind mes- 
sages to super, and need not construct individual subordi- 
nate objects because it is known that they can never be 
referenced directly. In the rest of this paper, we use dele- 
gation to examine encapsulation issues and then transfer 
the results into a class-based environment. 

The relationship between delegation and class-based 

97 



class X 
printon: aStream 

aStream nextPutAl1 : 
(self class name, self summary) 

class Y 
superclass x 
summary 

f'string representing internal state . . .' 

class X 
printon: aStream 

aStream nextPutAll: 
(customer class name, customary summary) 

class Y 
instance variables xcomponent 
printon: aStream 

'Delegate this task to my x component' 
xComponent.delegate printon : aStream 

T'string representing internal state . . . '  
summary 

Fig. 3 Pseudo-code 
The pseudo.code on the right is a delegation-based version of the Smalltalk on the left On the left, class Y inherits the printon: method from class X; a 
printon: message to an instance of Y will invoke the inherited method, which, by sending summary to self, will invoke the summary method in Y. On 
the right the use of self (e.g. in printon :) has been replaced by customer, and inherited messages (such as printon :) are delegated explicitly. 

inheritance also extends to multiple inheritance. The 4 Encapsulation and delegation 
various twes of multiple inheritance [ll can all be model- . .  _. 
led using delegation between component objects. This 
enables us to discuss the properties of various inheritance 
mechanisms using a common base of delegation. 

It should be emphasised that classes and delegation 
can CO-exist. In the simplest case, a system can use classes 
and delegation but have no inheritance mechanism to 
relate classes. Thus, a class defines the behaviour of i ts  
objects completely, and the programmer must use dele- 
gation to relate objects to their components, as in Fig. 3. 
In a more general system, there may be both delegation 
and inheritance between classes. As we have seen, the 
class inheritance mechanism can be used as  a shorthand 
for delegation, when the pattern of inheritance can be fixed 
in advance. We can even envisage tools that analyse a 
program to discover where delegation can be replaced 
with conventional inheritance. Such tools would be invalu- 
able in transforming a prototype system into a production 
system, as they would allow the programmer to discover 
and classify in a formal way the relationships between 
objects. 

LJ 
Fig. 4 Object interfaces 
Every object has four interfaces: to normal messages, to private 
messages, as a customer (e.g. object A) and when being delegated to 
(as B) 

98 

Gwen the connection between delegation and class-based 
inheritance, we can now examine the encapsulation issues 
using a general and powerful base. In this Section, we look 
at the problems of encapsulation in a delegation frame 
work and relate these to class-based systems. 

4.1 Encapsulation of instance uariables 

To retain the advantages of object-orientation, instance 
variables must be hidden from other objects by having 
access to them mediated via messages. If we accept this 
idea in a delegation-based environment, the carry-over to 
the class-based systems is clear; a class should not have 
direct access to instance variables defined in its ancestors. 
If inherited classes represent component objects, direct 
external access to the internal state of these objects should 
be impossible, as with all other objects. Snyder reached 
this conclusion by an alternative argument, that of encap 
sulation for maximal reusability Ill. 

All access to inherited instance variables should be via 
messages. If the implementor of a class makes clear 
which instance variables can be accessed or set in sub- 
classes, a traditional variable accessing syntax can be used 
as  a 'sugar coating' for the usual message-sending form. 
This does not violate encapsulation principles; a replace- 
ment class could provide methods that mimic the behav- 
iour of the inherited instance variable. 

4.2 Encapsulation of methods 

It was mentioned earlier that some methods should be 
entirely private to an object, callable only by direct invoca- 
tion from that object. Although this seems a relatively 
obvious encapsulation mechanism, surprisingly few lan- 
guages support it. 

Once delegation enters the scene, a new set of possible 
controls emerges (Fig. 4). A first step is to have an object 
only respond to some messages when those messages 
have been sent from objects to which it has delegated a 
task, i.e. when the object is playing the role of the cus- 
tomer. The motivation for this is simple: delegation takes 

Software Engineering Journal March 1992 



place when one object wishes to have another co-operate 
to accomplish a task To achieve this, the object being 
delegated to may need privileged access; just as  in real life 
a subordinate may have a ‘hot line’ to their manager. 
When an object delegates, it can choose to which objects 
it delegates and when, and thereby control which objects 
have extra access rights. 

Similarly, an object may have methods that should only 
be invoked by delegation. This is complementary to the 
previous type of encapsulation; if object A wishes to send 
a message m to object 5, B may need privileged access to 
A in order to fulfill the request implied by m. It can guar- 
antee that it has this by marking the method for m as  
executable only by delegation. 

Carrying these ideas over to class-based systems, we see 
that encapsulation between an object and its delegate 
takes place when messages are passed between a class 
and i ts  parent A message to super is a delegation to a 
subordinate object, whereas a message to self is equiva- 
lent to a message to the customer. The programmer 
should be able to control visibility at both of these inter- 
faces. 

The ability to control messages to super already exists 
in languages such as  Trellis/Owl 141 and C + + 151, in the 
form of subclass-visible methods (known as protected 
members in C++). The other category of methods, i.e. 
those that should only be visible to superclasses (to be 
invoked by sending a message to self), is not available. 
Note that there is a subtle distinction between these 
superclass-visible methods and private methods. A private 
method is only visible within the same class in which it is 
defined (or, in delegation terms, to its associated object), 
whereas a superclass-visible method can be invoked by 
sends to self in superclasses. 

4.3 Hiding messages 
In existing languages, the external interface of an object is 
the set of messages to which it responds (and, in some 
languages, the set of instance variables accessible in 
subclasses). For the most part, these languages ignore 
another essential aspect of an object’s interface, i.e. the 
messages it sends. For example (Fig. 3), if object y sends 
a printon: message to object x, clearly printon: is part of 
the interface to x, but so is the fact that x sends 
summary back to y in response. We can think of every 
object as  being an implementation of an abstract object 
type, which describes the behaviour of that object and all 
compatible objects 161. The type describes not only the set 
of messages that an object will respond to, but also what 
the externally observable response is. For proper control 
of encapsulation, a programmer should be able to control 
the visibility of messages, as  well as methods. Ideally, we 
would also be able to describe the circumstances under 
which each message emanates from an object, perhaps 
using the notion of contracts [7]. 

The closest that most languages come to providing a 
description mechanism for an object’s outgoing message 
interface is the provision of deferred or pure virtual 
methods (described using subclassResponsibility in 
Smalltalk). The presence of a virtual method m in a class 
C is a declaration that a message of that name might 
emanate from C,  sent to self, but that no response is 
defined by C ;  a descendant class must provide a 

Software Engineering Journal March 1992 

Fig. 5 Use of different object interfaces 
Object A receives a message m. which it delegates to B. B performs part 
of the task locally by sending p to itself, but also delegates another part 
n, to C 

response. This is similar to saying that a customer dele- 
gating a message to an instance of C should expect to 
receive a message m in response. 

4.3.1 Private messages: Fig. 5 shows one aspect in 
which encapsulation should be provided. When object A 
receives a message m, it delegates part of the task to 
object 5, which performs some of the task locally but, in 
tum, delegates a part of its task to C. Clearly, 5 should 
have the opportunity to complete some part of its task 
without communicating with A if it so desires, by sending a 
message to itself. If A, B and Cwere all component parts 
of an object defined by classes C4, CB and CC (as in Fig. 
2), this would mean that a method in CB would be able to 
invoke another method in CB without inadvertently picking 
up a redefinition in C4. In many languages, this is not 
possible; Smalltalk, for example, insists that sends to self 
are always rebound in the class of the receiver. Other lan- 
guages use conventional, statically bound procedure calls 
to achieve this (such as private non-virtual functions in 
C + +). 

This can also be illustrated using a CunninghamBeck 
diagram 18). In such a diagram (Fig. S), an object is rep- 
resented by a layered box, each layer corresponding to a 
class in the object’s class hierarchy. The class of the object 
is at the top, with superclasses below. A message send is 
represented by an arrow, whose tail is in the class from 
which the message is sent and whose head is in the class 
that provides the method for the message. Arbitrary sends 
enter an object from the top, i.e. in the object’s class, and 
proceed downwards (‘up’ the superclass hierarchy) until 
they encounter a corresponding method. Sends to self 
rise up out of the o b j a  re-enter in the top (the object’s 
class) and then drop down (‘up’ through the class 

99 



Fig. 6 A Cunningham-Beck diagram [8] representing the 
message interfaces between the different classes that define 
an object 
An instance of class CA ; d. Fig. 5 

hierarchy) until a method is found. Sends to super 
proceed directly downwards. To allow a programmer to 
encapsulate behaviour fully, it should be possible for an 
arrow to go sideways within an object, i.e. be confined to a 
single class. 

This enables us to send a message within a class 
without it constituting part of an object’s external interface. 
Additionally, by declaring the method executed in 
response to the message as private to the object, we can 
ensure that the use of the method is totally invisible 
outside the object. For maximum flexibility in control of the 
interface, the privacy of the method should be indepen- 
dent of the privacy of the message. 

4.3.2 Localising communication; referring back to Fig. 
5, consider also the response of C to the message n dele 
gated to it by B as part of B’s response to the message m 
from A. If C needs to communicate with the customer by 
sending it message q, which object does it use, A or B? Is 
delegation transitive? In our opinion, it should be B’s deci- 
sion as to whether C sees B as  the customer or B’s cus- 
tomer (in this case A) as  the customer. The interface to C 
should make clear that, when Cis delegated message n, it 
may contact the customer with one or more messages. In 
turn, B can decide whether it should handle these mes- 
sages (thereby making the use of C totally invisible to A) or 
pass them to its customer (thereby making them part of 
the public interface). Existing class-based languages only 
deal with one of these cases; if a class CB uses super to 
invoke a method in its parent CC, and CC uses self 
expecting a subclass to provide a method, there is no way 
for CB to ensure that it will intercept the message, making 
its use invisible to its descendents. This is one aspect of 
’the problem of self’ described by Lieberman [2]. 

The inability to ‘close’ the interface to a class, by c a p  
turing such messages and making them invisible to sub- 
classes, means that, in general, it is impossible to split a 
class into two or more classes related by inheritance, 
without compromising encapsulation. This makes it hard 
to divide a class into smaller parts, such that each part is a 
useful class in its own right, and hinders the evolution of 
reusable classes. 

5 Encapsulation in MUST 

The encapsulation issues described thus far are being 
investigated in a research language called MUST [9]. MUST is 
based on Smalltalk-80, but includes the following new fea- 
tures: 

0 Multiple inheritance based on ‘tree’ semantics [l]. 
Instance variables are private to a class. 
0 Method encapsulation: each method in a class can 
be categorised as either 

private (only visible within the class in which it is 

subclass-visible or superclass-visible, or both (visible 

0 
defined). 
0 
to super and self, respectively). 
0 public. 

0 the ‘normal’ kind (i.e. sent to an object which is the 
result of an expression), which contacts an object via its 
public interface. 
0 sends to super (as in Smalltalk-80, but qualified 
with a parent class name in the presence of multiple 
parents), which accesses the subclass-visible interface of 
a parent class 
0 sends to self, which uses the superclass-visible 
interface. 
0 sends to here, which uses the private interface to 
invoke a method in the same class, without the 
opportunity for interception in subclasses. 

As in Smalltalk, inherited components do not actually exist 
as  independent objects. This is possible because both 
super and here can only be used to indicate special forms 
of message sends; they cannot be used as identifiers for 
component objects. 
0 Delegation: in MUST, class inheritance is an abbrevia- 
tion for delegation. In addition, an explicit delegation 
mechanism is provided. A message can be delegated to 
an arbitrary object, provided that the message is part of 
the object’s subclass-visible interface; this rebinds self 
accordingly. There are two types of delegation; one passes 
on the customer (self) unmodified, and the other sets the 
customer to the object doing the delegation. 

The provision of a delegation mechanism integrated with 
class-based inheritance enables the programmer to 
express patterns of inheritance in convenient ways that are 
not otherwise possible. For example, it is possible to build 
totally secure proxies (also known as encapsulatots [lOD. 
which can intercept a message stream to an object entirely 
transparently. This is made possible by the rebinding of 
self during delegation and the ability to categorise 
methods as  private. Proxies can be used for serialisation, 
the construction of futures [ l  11 and in distributed systems 
to forward messages to remote objects. 

0 Message encapsulation: messages can be of 

6 Outstanding problems 
There are still some unresolved encapsulation issues in 
this framework They can broadly be grouped into two 
categories: primitive methods and initialisation. 

In Smalltalk-80, as in some other languages, primitive 
methods that are applicable to all objects are defined in 
the most general class, Object. This means that definitions 
of methods such as  class (which returns the class of an 

100 Software Engineering Journal March 1992 



object) or = = (which compares object identities) need 
only be in one class. However, if we view class inheritance 
as  an abbreviation for delegation between sub-objects, it is 
clear that these methods belong in each class; it does not 
make sense to delegate a test for object identity to another 
object. There seem to be two solutions to the problem, 
neither of which is entirely satisfactory. 

0 Have a system of such primitive methods in every 
class, perhaps automatically provided by the system. 
0 Adopt rather contorted definitions of class, = = etc., 
which operate on the customer. 

Another problem arises if we wish to have classes rep- 
resented by objects, and give each class the capability to 
create instances of itself. After creation, we would usually 
want to initialise an object to a state that satisfies the invari- 
ants for that object. However, this usually requires privi- 
leged access to the state of the newly created object; we 
would not want this access to be available to any other 
object after initialisation has taken place. One possibility is 
to have a special initialisation interface to each object. 
Another is to have specialty designated constructor 
methods in the class, which are allowed to perform initial- 
isation (as in C + + and Eiffel). 

Finally, it should be mentioned that it has been 
assumed throughout this paper that the unity of modular- 
ity and encapsulation is that which defines the behaviour 
of a single object or component object (usually a class). 
Sometimes this may not be the case, in that a group of 
objects, unrelated by inheritance, will co-operate to 
perform a task The collection of objects may be imple- 
mented as  a unit and encapsulation may only be an issue 
between the collection and external objects. In such cir- 
cumstances, the encapsulation mechanisms proposed 
above are inappropriate (in that an object in the group 
may wish to allow others in the group privileged access, 
while maintaining privacy from objects outside the group). 
The friend construct in C + +  and the selective export list 
of Eiffel attempt to address this problem, but place the 
access controls between classes and not between individ- 
ual objects. The resolution of this problem is the subject of 
current research within the MUST language, using a more 
general capability-like mechanism based on agents [9]. 

7 Summary 
We have explored encapsulation issues in object-oriented 
languages, using delegation a s  a framework for inheri- 
tance. It has been argued that existing class-based object- 
oriented languages do  not provide sufficient support for 
encapsulation, especially in the area of message inter- 
faces. Specifically, to enforce strict encapsulation, the fol- 
lowing additional mechanisms are suggested. 

0 A class should be able to distinguish which of its 
methods are public, visible only to subclasses, and private. 
0 There should be a type of message send that can 
invoke a local method without the chance of being inter- 
cepted by a subclass. 
0 In addition to the conventional super send, which does 
not alter self, a version should be provided that rebinds 
self to the class of the sending method. 

Software Engineering Journal March 1992 

A new object-oriented language, MUST based on Smalltalk- 
80, has been designed to explore these issues and to gain 
experience with the suggested encapsulation mechanisms. 

8 Acknowledgments 

The author would like to thank Andrew Barnard, William 
Cook, Neil Dyer, Michael Fisher, Trevor Hopkins, Borek 
Vokach-Brodsky, lfor Williams and the referees for their 
comments; and Andrew Barnard and Marion Godkey for 
help in the preparation of the diagrams. 

This work was supported by a Research Fellowship from 
the CIK Science and Engineering Research Council and by 
Research Grant GWEY65050. 

9 References 

SNYDER, A.: 'Inheritance and the development of encapsu- 
lated software components' in WEGNER, P., and SHRNER, 
B. (Eds.): 'Research directions in object-oriented program- 
ming' (MIT Press, Cambridge, Massachusetts, 1987) pp. 

LIEBERMAN, H.: 'Using prototypical objects to implement 
shared behavior in object oriented systems'. Proc. Conf. on 
Object-Oriented Programming Systems, Languages and 
Applications, Portland, Oregon, 1986, pp. 214-223 
STEIN, LA.: 'Delegation is inheritance'. Proc. Conf. on 
Object-Oriented Programming Systems, Languages and 
Applications, Orlando, Florida, 1987, pp. 138-146 
SCHAFFERT, C., COOPER, T., BUU-IS, B., KILIAM, M, and 
WILPOLT, C.: 'An introduction to Trellis/Owl'. Proc. ACM 
Conf. on 0bject.Oriented Programming Systems, Lan- 
guages and Applications, Portland, Oregon, 1986, pp. 9-16 
STROUSTRUP, B.: 'The C ++ programming language' 
(Addison-Wesley, Reading, Massachusetts, 1991) 2nd edn. 
CANNING, P.S., COOK, W.R., H I U ,  W.L., and OLTHOFF. 
W.G.: 'Interfaces for strongly-typed object-oriented program- 
ming'. Proc. Conf. on Object-Oriented Programming 
Systems, Languages and Applications, New Orleans, Loui- 
siana, 1989, pp. 457-467 
HELM, R., HOLLAND, LM, and GANGOPDHYAY, D.: 'Con- 
tracts: specifying behavioral compositions in object-oriented 
systems'. Proc. Joint Conf. OOPSWECOOP, Ottawa, 
Canada, 1990, pp. 169-180 
CUNNINGHAM, W., and BECK, K.: 'A diagram for object. 
oriented programs'. Proc. Conf. on Object-Oriented Prog- 
ramming Systems, Languages and Applications, Portland, 
Oregon, 1986, pp. 361-367 

ramming language'. Technical Report of the MUSHROOM 
project, Department of Computer Science, University of 
Manchester, 1988 
PASCOE, G A :  'Encapsulators: a new software paradigm in 
Smalltalk.80. Proc. Conf. on Object-Oriented Programming 
Systems, Languages and Applications, Portland. Oregon, 
1986, pp. 34 1-346 
HOPKINS, T.P., and WOLUKO, MI,: Writing concurrent 
object-oriented programs using Smalltalk-80. Computer J., 
1989,32, (4), pp. 341-350 

165-188 

WOLCZKO, MI.: 'Introducing MUST - the MUSHROOM prog- 

The paper was first received on 6 March and in revised form on 
29 November 199 1 .  

The author is with the Department of Computer Science, 
University of Manchester, Oxford Road, Manchester MI3 9PL 

101 


