‘\‘ i \'BC\—-&K@

SMALLTALK-80

Virtual Image Version 2

rent food utilities

31 May 19

System Concepts Laboratory
Xerox Palo Alto Research Center

Smalltalk-80:
Virtual Image Version 2

Software Concepts Group
Xerox Palo Alto Research Center

XEROX

Palo Alto Research Center
3333 Coyote Hill Rd.
Palo Alto, California 94304

Copyright © 1983 by Xerox Corporation. All rights
reserved. The Virtual Image described and/or
reproduced in this document was creates in 1981 but has
not been published within the meaning of the copyright
law. The Virtual Image is furnished under a license and
may not be used, copied, disclosed and/or distributed
except in accordance with the terms of said license.

Smailtaik-80 is a Trademark of Xerox Corporation

CONTENTS

Part 1: Tape Format Description
Part 2: The Goodie Files
Part 3: Muiltiple Inheritance Desc ripticm

Part 4: Erratain Smalltalk-80: The Language
-~ andits Implementation

Part 5: Summary of System Interface
Components

Part 1: Tape Format Description

Scope

Smallialk-80: The Language and its Implementation (Adele Goldberg and David Robson,
Addison-Wesley, Reading, Massachusetts, 1983) contains information necessary to
implement the Smalltalk-80 virtual machine, including the list of bytecodes and their
implementations, the list of primitives and their implementations, and a description of
storage management. The book, however, does not contain specifics for any given
Smalltalk-30 virtual image, as delivered on a magnetic tape. This memo is intended to
supply those specifics.

This document assumes that the reader has read Part 4 of the book, or at least has an
understanding of the terminoiogy used in that part, such as the terms ’cop’ and ’object
table.

Included below is a description of the file formats for the accompanying tape, which
contains the Smalltalk-80 Virtual Image Version 2, and a list of those objects and classes

known to Smalltalk-80 interpreters.
What is on the Tape

The Smalltalk-80 Virtual Image and associated files are written on a 9-track, 1600 bpi
phase-encoded magnetic tape. The tape consists of binary files written in ’continuous
stream’ mode, with 2048 byte records, and an eof mark after each file. The files (in order
of appearance on the tape) are:

1 Virtual Image 292 records 596,128 bytes
2 Sources file (in the image, called Smalltalk80.sources) 689 records 1,409,645 bytes
3 Changes file (in the image, called Smalltalk80.changes) 1 record 93 bytes
4, Trace file 1 of simulator 17 records 32,897 bytes
5. Trace file 2 of simulator 11 records 20,644 bytes
6 Trace file 3 of simulator 12 records 23,679 bytes
7 List of object pointers for classes 7 records 14,171 bytes
8. List of object pointers for methods 94 records 192,245 bytes
9-17. Goodie files (described in the following sections)

Note that the last record of each tape is a full, 2048-byte record, padded with nulls 0s)
from the end of the file to the end of the record. The byte lengths above are the size of the
actual data part of the file, and do nor include the padding. The padding bytes must be
stripped for the goodie files; whether they should be stripped for the other files depends on
your system—it would probably be best to strip them all

5 © Smalltalk-80 Virtual Image Version 2

System Dependencies-

All bytes are considered 8-bits, ail words are 16-bits. Words in the file are stored in the
order of more significant byte followed by less significant byte.

We realize that some implementations would prefer to have words stored low byte followed
by high byte. Unfortunately, there is not one consistent "other” way to store bytes in
words. We think that the transformation of the image that would work for most machines
is to swap the bytes of all fields accessed as words, and to not swap the fields accessed as
bytes. This has been done by a number of other implementaiions already (see Smalltalk-50,
Bits of History, Words of Advice, Glenn Krasner, Ed., Addison-Wesley Publishing Co.,
Reading Massachusetts, September, 1983). The transformation typically works best by
having an auxiliary program translate the image from its interchange format to your internal
format. The suggested algorithm which may or may not be best for your system is

For word-type objects: swap every field.
For CompiledMethods: swap Length, Class, Header and Literal fields only.
For all other byte-type objects: swap Length and Class fields only.

Virtual Image File (File 1)

The Virtual Memory Image consists of length information, followed by the data
representing objects (object space), followed by the data representing the object table. The
first four bytes (stored as most significant byte first) contain the length of the object space
(in 16-bit words). The next four bytes of the file is the length of the object table. The next
504 bytes are set t0 0. By convention, an image file is defined to be in interchange format
if the ninth and tenth bytes are zero—if either byte is non-zero the image file is assumed to
be in an internal, non-interchange format

For this image, the first ten bytes are:

0, 3, 3635, 1004, (Object space length = 517760,;bytes)
0,0, 227, 120,, (Object table length = 77472, bytes)
0,0

(and the last ten bytes of the file are:
0, 0, 0, 405 0, 0, 1, 103, 363, 73).

Following this (starting at the 513th byte) is the object space. The first word encountered is
the first word of the object whose object pointer (cop) is 2 and whose object space address
is 0 (20 bit address). (Oop 0 is reserved as an invalid cop; ocop 1 and all the other odd oops
are Smallintegers.) The next words are the fields of the remaining objects, stored
consecutively, up to the length of the object space. Following the object space are encugh
0’s to start the object table at a page (256-word, 512-byte) boundary.

Part 1: Tape Format Description 3

The next word is the first word of the object table entry for the object with oop (object
pointer) = 0. (Oop 0 is an invalid oop, but the object table entry exists anyway.) The rest
of the words of the object table follow. The last word of the object table is the last word of
the file (once the padding bytes mentioned above are stripped off).

Note:

The length and object space portions of the file are padded with 0’s to the end of
a page, but the object table is not. ~

The object table entries either are pointers to objects in the object space or are
unused entries, and the object space contains only objects; there is no free
memory in the object space. :

The object table contains unused entries. These have the ’freeEntry’ bit set, but
all other bits in both words are 0. Implementors who want to link the unused
entries, as described in the book, will have to link these themselves.

The object table assumes that objects are stored contiguously starting at address 0
in a 20-bit address space. There is no distinction for "segment” boundaries, as
described in the book. Any desired address translation is left to the implementors.

When the system comes up, there will be three views alive on the screen (see figure), a
SystemTranscript, a SystemWorkspace, and a SystemBrowser. The screen will be 640 by
480 pixels in size (there is an expression in the SystemWorkspace for changing it The
globals Disk and SourceFiles will both be set to nil so that source files will not be accessed,
but instead methods will be decompiled. The selected text in the SystemWorkspace is what
to execute to build an Alto file system and to initialize SourceFiles. Once your file system
is working, you can use this as a guide to installing it

ASystem Workspacef- . o Bk YD

-| The Smalltaik -80tm System Version 2
4 Copyrignt (c) 1983 aerox Serp.

Snapshor at: (31 May
1983 10:37:52 am

MNumarnc-Ma gnituda
Numernc-Numbars

Collactions-Apstrad
Collactions~Unaraer
Ccetlactions=3aquand
Collactions=-Taxt

JQctigns=Arraved

s Tand

All nghts reserved
Create File System
Disk * aitoFileDirectory naw

SourcefFilas +» Array naw: 2.
Sourcefilas at: 1 put:

SourceFiles at: 2 put
(FilaStream aJidFilaNamaa:

‘Sma.lruk-ac,cnangu').

(SourcaeFilas ac: 1) readOniy

SourceFilas = Disk = nil.

Files

(FileStraam digFileNamed: “fileaMama 3t

Bla R Lo s Slonl o e o o

ot s a spFt i

(FilaStream oidFileNamaed: ‘Smalitaik=20.zo0urcas’)

filgin,

[Tl " E WY

4 Smalltalk-80 Virtual Image Version 2

Sources and Changes Files (Files 2 and 3)

The second file of the tape is a copy of the system sources, which you may print if you like.
This file consists of the definition of each class in the system, followed by the code for that
class’s methods. (There is a form feed character between each class, ASCII 12,,) The
format of this file may be understood by reading the source code for the nextChunk method
in class ReadWriteStream and the getSource method in class CompiledMethod; it is the same
format as that used in fileln/fileOut.

Each CompiledMethod in the imagé contains a pointer to its source code, encoded in the last
three bytes of that method. The two msb’s of the first of these bytes determine the file on
which the source is stored (00=Smalltalk-80.sources’, 01=Smalltalk-80.changes’,
10=unused, 11=unused). The six Isb’s of this byte with the two following bytes make up a
22-bit pointer specifying where in that file the source code begins. The source code for that
method is terminated by $§! (any embedded $! is doubled).

Note:
The sources file on this tape is quite long; and the changes file is very short.

Trace Files (Files 4-6)

The tape includes three traces of the Smalltalk-80 interpreter executing the first bytecodes
in this Smalltalk-80 virtual image. These were made by running the formal specification of
the interpreter written in Smalltalk-80 itself. The intention is that you would follow these
traces, by hand for the first while and. later by writing your own trace files, and compare
them with your system’'s performance—where they differ you are likely to have an
implementation bug. The three traces show decreasing levels of detail over increasing
durations.

- The first trace shows all memory references, allocations, bytecodes, message
transmissions, returns and primitive invocations for about the first 100 bytecodes

executed.

- The second trace shows only the bytecodes, message transmissions, returns and
primitives for about the first 512 bytecodes.

- The third trace shows message transmissions, primitives and returns for about the
first 1982 bytecodes. The lines of this trace are indented according to the level of
method invocation (i.e., the depth of the context stack).

The format of each type of entry is given below. All numbers are shown in decimal.

Memory Reference (only in first trace)

Part 1: Tape Format Description 5

Pointer Fetch

object-pointer pointer: fieldindex = field contents
E.g., 20656 pointer: 20 = 1617

Byte Fetch

object-pointer byte: bytelndex = byte contents
E.g., 3872 byte: 46 = 208 ‘

Word Fetch

object-pointer word: fieldIndex = field contents
Eg, 18168 word: 0 = 5

Pointer Store

object-pointer pointer: fieldIndex « field contents
Eg., 20654 pointer: 1 « 15

Allocation

allocating oop: object-pointer
E.g., allocating oop: 20654

Bytecodes (in first and second traces)

Bytecode <bytecode-index> bytecode-description
E.g., Bytecode <16> Push Temporary Variable 0

Message Transmission (in all traces)

[cycle=bytecode cycle] receiver-description selector-string argument-descriptions
The bytecode cycle is the number of bytecodes that have been executed. The
receiver and argument descriptions will show the class of the appropriate object
except in the case of Smallintegers, Strings, true, false, and nil, which print more
nicely.
Ezg., [cycle =408] al.argePositiveinteger digitAt: 3
[cycle=75] 40 digitMultiply:neg: 808 false

Primitive Invocations (in all traces)

Primitive # primitive-index
E.g., Primitive #70

Returns (in all traces)

+ (method / block) of returned value description
Ezg., T (method) of alargePositivelnteger
t (block) of 64

Object Pointers List Files (Files 7 and 8)

As an aid to debugging, the tape includes a list of the oops of all classes and methods in the
system. These lists have been found paticularly helpful in debugging the message lookup
code of an interpreter. The list shows the oops in both octal and hexadecimal. Examples of
classes from file 7 are

8 Smalitalk-80 Virtual Image Version 2

8rl4 16rC Smalllnteger
8rlé 161E String
8r20 16r10 Array
3r24 l6rl4 Float ;
8ri6 16r16 MethodContext
. 8r30 16r18 BlockContext
<832 16r1A Point
8r34 16r1C LargePositiveInteger
8r36 16rlE DisplayBitmap
3rd0 16120 Message

which means that in the image, for example, class Smallinteger has oop 144 (0C,) and class
Messagehas oop 40, (20,). Examples of methods from file 8§ are

8rid4 16r64 <Collection classd>with:with:with:with:
8r150 16168 {Collection class>with:

8r1s2 16r6A {Collection class>with:with:with:
8ris4 16r6C <Collection classd>with:with:

&rl76 16r7E {ClassOrganizer class>new

8rd72 lérl3a <Object>nextinstance

8r500 161140 <Object>printString

8r524 16r154 <Stream class>new

8r572 16r17A <Stream>nextPut:

3r574 16r17C {Stream>contents

which means that in the image, for example, the method for the message with:with:with:with:
in class Ciollection class has oop 144, (64,,) and the method for the message contents in
class Stream has oop 574, (17C,)).

Part 1: Tape Format Description * 7

Objects Known to Interpreters

There is a set of objects that must be known by a Smalltalk-80 interpreter. For example, in
various places in an interpreter, the oop of nil must be known to be 2. Typically, an
interpreter will keep the oops of these objects as compile-time or run-time constants, or
keep them in special tables. A list of these special oops/objects follows. Those marked *
are not necessarily needed by interpreters, but are included in this table as debugging aids.

2 the object nil
4 the object false
6 the object true

10, 08, an Association whose value field is Processor

*12, 0A,, Symbol class variable USTable, the table of Symbols

14, 0C, class Smallinteger

16, OE,, class String

20, 10, class Array

*22;, 12,, an Association whose value field is the SystemDictionary, Smalitalk

24, 14, class Float

26, 16, class MethodContext

30, 18, class BlockContext

32, 1A, class Point

34, 1C,, class LargePositivelnteger

*36; 1E;, class DisplayBitmap

40, 20, class Message

42, 22, class CompiledMethod

*44, 24, symbol # unusedOop18

46, 26, class Semaphore

50 28,, class Character

32 2A,, symbol #doesNotUnderstand:

54, 2C,, symbol # cannotReturn:

*56; 2E,, symbol # monitor:

60, 30, SystemDictionary class variable SpecialSelectors,
the array of selectors for bytecodes 2604-317,

62, 32, Character class variable CharacterTable, table of Characters

64, 34, symbol # mustBeBoolean

Smalltalk-80 V: aage Vérsion 2

Part2: The Goodie Files

In addition to the Virtual Image, source code files, and system traces, we have also included
on the tape nine files that make up eight goodies. The goodies are fairly small Smalltalk-80
applications. Some of the goodies are application examples from the books, others are new
and have not been described elsewhere,

These goodies should serve as examples to new Smalltalk-80 programmers. However, they
should nor be considered complete, debugged software, but rather startmg points for more
complete and better debugged applications.

A second use of these goodies is to open the channels of communication among Smalltalk-
80 users. It is our hope that a community of Smalltalk-80 programmers will develop, to
encourage and facilitate the sharing of code. These goodies serve as the first pieces of code
to share. In fact, two of them did not originate at Xerox PARC; one was written by a
Smalltalk-80 programmer at Tektronix and the idea for another came from a Smalltalk-80
programmer at U.C. Berkeley. Please share any new goodies you have, including
improvements to these, with the rest of us. The address to use in submitting goodies is:

Smalltalk-80 Newsletter Coordinator
Xerox Palo Alto Research Center
3333 Coyote Hill Road

Palo Alto CA 94304

The following pages describe the goodies in more detail. The format used in the
descriptions is described in Part 5. Here we will list the files as they appear on the tape
(with record counts as a double-check of the integrity of the tape). The goodie fies are:

9. Book Index Browser 11 records 22,187 bytes
10. Book 1 Index 17 records 34,721 bytes
1L Protocol Browser 2 records 3,117 bytes
12. Project Browser 2 records 3,420 bytes
13. Financial History 4 records 7,021 bytes
14, Clock 3 records 4,757 bytes
15. - Animation 4 records 7,465 bytes
16. Pointing Hand 3 records 5,846 bytes

17. "Toothpaste" Graphics 1 record 1,339 bytes.

10 Smalltalk-80 Virtual Image Version 2

n Index List

ankTaller

L
-
w

or

s h-ullr
Jina
n

Mnomial

Cm@mmom [_I)
- -

manipulation
BitElr
BitSIt
combination rula
Eirzimularion
P

nan

r

oo
-t -
- 5]

- -
i

(]
(]
-

argument L 0.

conre .t Ef‘f:
BlockCantext i
Baaiaan i

QuOridRringG

Part 2: The Goodie Files 11

1. Book Index Browser (Files 9 and 10)

This "goodie” is a collection of Smalltalk-80 class definitions that allow one to browse and modify
the index for a book. This browser was used to create the indexes for the Smalltalk-80 book series.
File 9 contains the class definitions, and file 10 is the actual index database for the book, Smalllalk-

80: The Language and its Implementation.

name

general description

how accessed

how created

how terminated
blue button activity

red button activity
subview A

subview B

Book Index Browser

Used to browse and modify an index for a book. It includes support
for adding and removing definition and use pages, for nesting entries
under others, for "see" and "see also,” for automatically creating
range notation (2-4) out of sequential entries (2,3,4), and for filtering
the viewed entries.

To bring the class definitions into your system, file in File 9 from the
tape. Also bring File 10 from the tape into your file system, and call
it, for example, "bookl.index." The classes on this file are ail put
into system category Book-Index, so you may need to update your
browser by chosing hellow button menu item update. To create a
view, evaluate the comment in IndexCardCollection openOn: which
is

IndexCardCollection openOn: ’'book1.index’

The view created has three subviews arranged vertically. The top
subview (subview A) is used to define the filter for the entries to be
seen. The middle subview (subview B) is used to list, select, and
modify index entries. The bottom subview (subview C) is a read-

only view of the currently selected entry.

Evaluate the code above, then designate the area for the view with
red button.

Blue button choose close.

Default

Behaves like a standard paragraph editor.

Selects (or deselects) the entry to which the cursor points. When one
is selected, the bottom subview will display its contents.

12 Smalitalk-80 Virtual Image Version 2

BankTallar
becoma:
Bahawior
Barroaalli
binary message
Binary Traa add page
Binomial add defn page
2 Grabam add use pagae
ramoye nage

manipulation
EitEir
EirElr
coambination rube
BirtBIr3inlation
Eirmam
miTmap
bln:v il 3
AFUnEne E it
CanteaT SN
i
Eoolaan

bordering

e BlockConraxe

Jqes3: 253, |

b
(=

yellow button activity

subview A

subview B

keyboard activity

Part 2: The Goodie Files 13

accept Accept the contents of the view to be the filter
of the entriecs. Valid filters are:
* Show everv entry
#<number> Show only entries on page
<number>,
{string> Show only entries whose category

matches <string>

add page Add a new page or page range to the sclected
entry. When prompted, you specify a page by
the page number (followed by accept) or a page
range by the start and end page numbers of the
range with a minus ($-) between them (followed
by accept).

add defn page Add a new page or page range to the selected
entry for its definition. Definition pages are
identified in the bottom subview by being

- surrounded by parentheses.

add use page Add a new page or page range to the selected
entry for its use. Use pages are identified in the
bottom subview by being surrounded by angle
brackets,

new card Add a new entry to the list. You wil be
prompted for the new key and category.

new nested card Add a new entry nested under the selected entry.
remove card Remove the selected entry.

change key Change the key of the selected entry.
change nesting Change the nesting of the selected entry.
change category Change the category of the selected entry.

change See Change the "See" reference of the selected entry.

change See Also Change the "See also” reference of the selected
entry.

update file Store the current version of the index on a file

(note although you read the index from a file,
the file is not updated unless you give this
command).

make ranges Run through all the entries, condensing
sequential pages into page ranges.

Subview A acts like a paragraph editor, the other subviews ignore
keyboard activity.

Smalltalk-80 Virtual Image Version 2

Entire pratocal ofr True
4= (Object)
{== (Objecr)
addDependent: (Object)

& alternativeObject

1 “Evaluating conjunction == answer alternativeObject
| | since receiver is true.”

ralternativeQbjece

Entire: pratocol afs True

- _
= {(1bject)
== (Objacrt)
addDependent: (Objecr) i2nders \
' implamentors

Mesiages
'‘Evaluating conjuncrion == an: v =r aitarnativedbjacre

& alterna tiveObject

5iNCe receivar 5 trge”

ralrarnativadbjacr

Part 2: The Goodie Files 15

2. Protocol Browser (File 11)

This "goodie” creates a browser to look at the entire protocol of a class, that is, all the messages an
instance of that class can receive. It includes the messages defined in that class and all of its
superclasses. (Since this is supposed to be the "external” protocol of a class, methods overwritten in
a subclass are not included in the list, even though they can be accessed "internally” with super.)
File 11 contains the code for creating a protocol browser as described in the book, Smalltalk-80:
The Interaciive Programming Environment (Adele Godlberg, Addison-Wesley Publishing Company,

Reading, Massachusetts, November, 1983).

name
general description

how accessed

how created

how terminated
blue button activity

red button activity

subview A

subview B

yellow button activity
subview A

subview B

Protocol Browser
Used to create a browser to view the entire protocol of a class.

To bring the class definitions into your system, file in File 11 from
the tape. The class on this file is categorized under Interface-
Protocol, so you may need to update your browser by choosing
yellow button menu item update. To create a view, evaluate the
comment in ProtocolBrowser openForClass: which is

ProtocolBrowser openForClass: ProtocolBrowser

The argument to openForClass: may be any class. It creates a
"message set” browser, with two subviews. The top subview
(subview A) contains the list of messages in the class’ protocol, along
with the name of the class in which each message is defined. The

bottom subview (subview B) is a code view of the selected message.

Evaluate the code above, then designate the area for the view with
red button.

Blue button choose close.

Default

Selects (or deselects) the method to which the cursor points. When
one is selected, the bottom subview will display its code.

Behaves like a standard code editor.

Standard message set menu.
Standard code editor menu.

18

Smailtalk-80 Virtual Image Version 2

Project Brawser

various browsars baing daveloped,

! ig&]ﬂ
undo

2nrar

add praj

remoye prolac

=T of

S A3 brows

sers b

-]

aing o

.:_4“:.L' =15

-~

Part 2: The Goodie Files 17

3. Project Browser (File 12)

This "goodie” creates a browser to look at all the system projects at the same time. File 12 contains
the code for creating a project browser as described in Smallialk-80: The Interactive Programming
Environment. It creates a new class ProjectBrowser and modifies the class Project.

name
general description

how accessed

how created

how terminated
blue button activity

red button activity

subview A
subview B

yellow button activity

subview A

subview B

Project Browser
Used to create a browser to view the system projects.

To bring the class definitions into your system, file in File 12 from
the tape. The class on this file is categorized under Interface-
Projects. To create a view, evaluate the expression
ProjectBrowser open

It creates a project browser with two subviews. The top subview
(subview A) contains the list of projects in the system. The bottom

subview (subview B) is a text view of the selected project.

Evaluate the code above, then designate the area for the view with
red button.

Blue button choose close.

Default |

Selects (or deselects) the project to which the cursor points. When
one is selected, the bottom subview will display its text.

Behaves like a standard paragraph editor.

enter Make the selected project be current. (You may
want to open another project browser in that
project to get back to the original project.)

add project Add a new project to the system and to the
browser. You will be prompted for a title for the
new project that will appear in subview A,

remove project Remove the selected project from the system. You
may not remove the active project.

Standard paragraph editor menu.

18 Smalitalk-80 Virtual Image Version 2

Financiak Hista

=00

How much for food 7

“:“:fu

\

100

ant faad urilitias d 111) pay intar

Part 2: The Goodie Files 19

4. Financial History (File 13)

This "goodie” is the financial history example used in Smalltalk-80: The Interactive Programming
Environment. File 13 includes four class definitions: FinancialHistory models activity of a simple
budget; BarChartView displays views of models (in particular, instances of FinancialHistory) as bar
charts; FinancialHistoryView combines two BarChartViews for expenses and incomes; and

FinancialHistoryCntroller handles user interaction with a FinancialHistoryView.

name

general description

how accessed

how created

how terminated

blue button activity

yellow button activity

Financial History

Models and allows viewing and editing of a simple budget.

To bring the class definitions into your system, file in File 13 from
the tape. The class on this file is categorized under Financial Tools,
s0 you may need to update your browsers by choosing yellow button
menu item update. To create a view, evaluate the expression in the
method FinancialHistory exampleWorkspace

Smalltalk at: # HouseholdFinances put: nil.

and then evaluate the other expressions in the example method. This
creates a view of a financial history that already has some expenses
and incomes. The two bar charts in the view show the amounts of

expenses and incomes.

Evaluate the code above, then designate the area for the view with
red button.

Blue button choose close.

Default

spend Add an expense to the financial history. You will be
prompted for the name of the expense, then prompted
for the amount. If the name is new, a new bar will be
added to the chart.

receive Add an income to the financial history. You will be

prompted for the name of the income, then prompted
for the amount. If the name is new, a new bar will be
added to the chart.

20 Smalitalk-80 Virtual Image Version 2

5. Clock (File 14)

This "goodie” is a view of a real-time clock. File 14 includes two class definitions, one which is the
"view," ClockView which displays the time of day, and the other of which is a “controller,”
ClockController which handles user interaction with a ClockView.

name Clock
general description Displays the time of day.
how accessed To bring the class definitions into your system, file in File 14 from

the tape. The class on this file is categorized under Graphics-
Clocks, so you may need to update your browsers by choosing
yellow button menu item update. To create a view, evaluate the
expression

ClockView open.

This creates a standard system view whose title is the current date -
and whose hands are the current time. The clock will refresh itself

every minute, so it is best not to put other views on top of it

how created Evaluate the code above, then designate the area for the view with
red button. Note that the view remains square.

how terminated Blue button choose close. Note that this is the only way to
terminate the refresh of the clock.

blue button activity Default

Part 2: The Goodie Files 21

6. Animation (File 15)

This "goodie” is a set of class definitions that demonstrate animation. File 15 includes seven class
definitions that define various animation entities. The example isea simple animation; better

animations are welcome.
name ' Animation

general description Provides classes that can give animation. The types of animation
entities include those that bounce within a window, those made up of
a sequence of images (rotating star), those that have transparent as
well as opaque areas, and those whose images are created
dynamically (e.g., from a rectangle on the screen near the cursor).

how accessed To bring the class definitions into your system, file in File 15 from
the tape. The classes on this file are categorized under Graphics-
Animation, so you may need to update your browsers by choosing
yellow button menu item update. The last line of the file will start
an animation; to restart it, evaluate the expression

WindowNode example

how created Evaluating the code above creates a box on the display and three
animation entities that bounce within that box. One is a "spinning"
star, one is a transparent/opaque torus, and the other a box that gets
its contents from the area of the display near the cursor. Play with
the animation by moving the cursor and seeing how the box changes

how terminated Press any mouse button while the cursor is in the view.

22 Smalltalk-80 Virtual iImage Version 2

7 Let’s Have a Hand for that Demo (File 186)

This “goodie” Is a large pointing hand, useful for pointing out items on the screen during
demonstrations. File 16 includes the code for doing this.

Pointing Hand

name

general description Creates a large pointing hand that moves with the cursor.

how accessed To bring the ccde into your system, file in File 16 from the tape.

how created Once the code is filed in, any time you are inside a Standard System
View and you hold down the left-shift key and then hold down the
blue button, the large hand will follow the cursor. You may release
the left-shift key any time thereafter and the hand will remain as
long as the blue button is down.

how terminated Release the blue button.

=

Part 2: The Goodie Files 23

8. Toothpaste Graphics (File 17)

This "goodie” is a method added to Form class that draws spheres. The algorithm, by Ward
Cunningham of Tektronix, was styled after the work of Ken Knowlton, published in Computer

Graphics, 15(4)352.

name ‘ ‘Tootbpaste Graphics
general description Draws spheres on the display that resemble squeezed toothpaste.
how accessed To bring the code into your system, file in File 17 from the tape and

evaluate the expression
Form toothpaste

how created Once the code is filed in, and the expreésion is evaluated, whenever
the red button is held down, toothpaste appears at the cursor
position.

how terminated Click the yellow button.

24

Smalitalk-80 Virtual Image Version 2

Part 3: Multiple Inheritance Description

The Smalitalk-80 System includes support for multiple inheritance of classes. We include a paper
by Alan Borning and Daniel Ingalls that describes the approach used. Here we will provide a little
more background on its use. The status of the implementation provided is similar to a "Goodie” in
that it is nowhere actually used in the system itself, and it has not been rigorously tested.
Nonetheless, all the necessary support is there, and in many situations the use of multiple
superclasses can lead 1o a cleaner organization.

As an example, consider the Stream hierarchy presently in the system:

Stream {)
PositionableStream ('collection’ ’'position’ 'readLimit’)
ReadStream () ,
WriteStream (‘writeLimit’)
ReadWriteStream ()

In this organization, it is necessary for all ReadStream behavior to be copied by the programmer
into class ReadWriteStream. Not only is this a burden, but it also presents a pitfall for later
modification of the system, for there is no mechanism to maintain the constraint that these two
copies of code must remain the same. It would appear more appropriate in this case to have
ReadWriteStream be a subclass of both ReadStream and WriteStream.

In order to create a class with multiple superclasses, you must type a different expression in the
browser in place of the normal class template. To define our new kind of read-write stream, for
example, you would type and ’accept’
Class named: # NewReadWriteStream
superclasses: 'ReadStream WriteStream’
instanceVariableNames:

classVariabieNames:
category: 'Collections-Streams’

If one were to enter and accept the above definition for NewReadWriteStream, the Transcript
would show the following t{wo messages:
NewReadWriteStream has conflicting inherited methods
-- consult browser for their names

NewReadWriteStream class has conflicting inherited methods
-- consult browser for their names

If you browse to the category ’'conflicting inherited methods’ in NewReadWriteStream, you will
find a bunch of methods with 'tself conflictinginheritanceError’ as their code. These methods
were automatically generated because the system did not know which of the methods from
ReadStream or WriteStream was appropriate to inherit. Typically, you would remove the source
of conflict, or replace the generated error code with code which computes an appropriate result.

In this particular case, the conilicts arise for the most part from conflicting styles - many parnts of the present

system use dummy methods (“subclassResponsibility” and "shouldNotImpiement”) to document proper protocol

Unfortunately, this style often interferes with simple use of muitiple inheritance. As we evolve a clearer style
of using multiple inheritance, these issues will be dealt with more -effectively.

26 Smalltalk-80 Virtual Image Version 2

As an exercise, and as a convenient feature for working with multiple inheritance, you could
redefine
Class class>instance creation>template:
so that the class definition template can optionally be in the multiple inheritance form above. The
method could, for example, return a template of the above form when the left-shift key is pressed.
The decision whether to print the normal or multiple-inheritance pattern is made in
ClassDescription>printing>description,
based on whether a class has muitiple superclasses. Therefore, once a class has been defined to
have multiple superciasses, its definition will subsequently be printed as above.

You may notice that the multiple inheritance template for classes does not provide for reference to
pool dictionaries. The reason is that multiple inheritance provides a simpler mechanism for
accomplishing the same effect. Instead of a pool, one simply defines a new class with the desired
variables declared as class variables. This class can then be mentioned as a superclass of any class
which needs access to the common variables. Thus the generalization of semantics afforded by
multiple inheritance eliminates the need for an added mechanism (pool variables) in the non-
extended system. An additional benefit to this approach is that the normal class mechanism
provides a place (initialization message and commients) to compute initial values for the variables
and to document their purpose and use.

It is worth noting that if most behavior is inherited from a single superclasses, that class should be
mentioned first in the list of superclasses. In this way, fewer methods will need to be copied, and
less overhead of consistency maintenance will be incurred.

In the implementation, a distinction is made between the principal (dynamic) superclass and other superclasses.
The principal superclass is the first one mentioned in the superclass list of the definition, and it is seen by the
virwal machine as a normal Smalitalk-80 superciass. The remaining superclasses are simulated by copying
messages and instance variables. As a result, a certain amount of bookkeeping is necessary to maintain the
consistency of this simulation when methods are added, removed, and changed.

Muitiple inheritance in Smalitaik-80

Alan H. Borning
Computer Science Department, FR-35
University of Washington
Seattie, WA ©8185

Daniel H. H. ingalls
Xerox Palo Alto Research Center
3233 Coyole Hill Road
Palo Alto, CA 24304

-«

Abstract

Smalltalk classes may be arranged in hierarchies, so that a
- ¢lass can inherit the properties of another class. in the standard
Smalitalk language, a class may inherit from only one other class.
in this paper we describe an implementation of multiple
inheritance in Smaliltalk,

1. Introduction

Smalltalk is a powertful interactive language based on the idea
of objects that communicate by sending and receiving messages
{ingalls 78, LRG 81, Galdberg 82]. Every Smalitalk object is an
instance of some class. Classes are organized hierarchically, so
that a new class is normally defined as a subclass of an existing
class. The subclass inhents the instance storage requirements
and message protocol of its superclass. It may add new
information of its own, and may override inherited responses to
messages.

in standard Smailtalk, a class can be a subciass of only a
single superclass. On cccasion, this restriction is undesirable and
leads to unnatural coding styles. For example, the Smalitalk
system includes a class Transcript that displays and records
notification messages and the like. it is declared to be a subclass
of Window, but also has the message protocol of a WriteStream to
which one can append characters. Since it cannot be a subclass
of both Window and WriteStream, the necessary methods for
stream behavior mds! all be duplicated in Transcript. Such
duplication is unmodular. If some method for streams is added or
modified, the class Transcript does not automatically feel this
change (as it would if it were a subclass of WriteStream).

The natural solution is to allow classes to be subclasses of more
than one superclass. in this paper we describe an implementation
of muitiple superclasses, which is now available in the Smalltalk-
80 system used within Xerox PARC.

234

2. Semantics of Multiple Superciasses
A class may have any number of superclasses; however, an
instance is always an instance of precisely one class.

2.1. Messaqge Handling

When an instance receives a message, it first checks the
method dictionary of its own class for a method for receiving that
message. If none is found, it searches the method dictionaries of
its immediate superciasses, then their superciasses, and so on. if
a single method is found, then it is run. if no method or more than
one method is found, an error message is issued. The gverriding
of inherited methods is still allowed; it is an error only if a class
with no method of its own inherits different methods from two or
more of its superciasses. Further, it is not an error if the same
method is inherited via several paths. (This is a simplified
explanation; Section 4 describes our actual implementation.)

2.2. Access to Qverridden Inherited Methods

in single-superclass Smalitalk, the programmer can access an
inherited overridden method using the reserved word super. For
example, in code defined in a given class C, the inherited method
for copy may be invoked using the expression super copy, even if
C itself has a method for copy.

This mechanism may be insufficient in the presence of muitiple
superclasses -- for exampie, if C inherits two different methods for
copy, the user needs a way to indicate which is wanted. To allow
for this, we extend the syntax of Smalltaik by adding compound
selectors consisting of a class name, followed by a period,
followed by the actual selector, e.g. Object.copy. When one of
these compound selectors is used in a message, the lookup for
the method starts with the class named in the compound selector.

When there is no ambiguity, it is stil convenient to be able to
say "use the method inherited from my supercilass” without
naming that superclass. In analogy with the above form of
compound selector, this can be accomplished by writing e.g.
self super.copy.

Finally, there are times when one would like to invoke ail the
inhernited methods for a given selector, rather than just one of
them: the principal example of this is for the initialize method. To
accomplish this, the programmer would write self ailinitialize. R
wouid be straightiorward to add other sosts of method
combination schemes using this basic mechanism.

3. Examples of Using Multiple Inheritance
in this section we present a number of examples that illustrate
the usefuiness of muitiple inheritance.

2.1. Simuia-style Linked Lists

Simula, which has a single-superclass inheritance hierarchy,
defines a list-processing package that supporis doubly-linked
fists [Birtwistle 73]. The class Link specifies that each of its
instances contain a reference to a successor and to a
predecessor object. Subclasses of Link may then be defined that
inherit this ability to be included in tinked lists. An analogous class
may be easily defined in Smalltalk. (An advantage of

implementing linked lists in this way, rather than having a separate’

link objectihat simply points to an object X in the list, is that X can
wnow about the list in which it resides.)

However, there is a problem with the class Link in both Simula
and single-superclass Smalitalk. Given an arbitrary existing class

_ _C. untess C aiready has Link in its superclass hierarchy, a

programmer cannot use C in defining a new subclass that also has
the properties of a Link.

Multiple superclasses provide a natural solution. For example,
if the programmer wants to make objects that are like windows
and can also be included in doubly-linked lists, he or she can
simply defing a new class QueueableWindow that is a subclass of

both Window and Link. The new class will inherit the instance
state requirements and message protocol of both Window and
Link, yielding the desired behavior.

3.2. Other Examples

As mentioned in the introduction, another situation in which
muitiple inheritance is useful is in defining the class Transcript 28
a subclass of Window and of WriteStream.

To take another example from the standard Smalitaik-80
system, a number of kinds of streams are defined, including
AeadStream, and ReadWriteStream.
ReadWriteStream is rather arbitrarily declared to be a subclass of
writeStream, with the extra methods needed for ReadStream
behavior copied by the programmer. Using our new system,
ReadWriteStream is naturally defined as a subclass of both
ReadStream and WriteStream.

WriteStream,

235

3.3. Pool Variables
This last example is of 2 somewhat different nature. In addition

to instance variables, the Smalltalk-80 language ailows the
programmer to define class variables that are shared by ail
instances of a given class and its subclasses. However, on
occasion, the programmer wants variables that are to be shared
by a number of non-hierarchical classes, but which aren’t properly
deciared to be global variables. A mechanism for handiing this
exists already: one may declare a dictionary of pool variables that
may be shared among several ciasses. (An example of this is the
FilePool of constants and variables that are shared by all the
classes used in file 1/0.)

Muitiple superciasses provide a more elegant solution. Rather
than using pool variables, one can for example define a class
FileObject that has class variables corresponding to all the
variables that used to be in FilePool. Each of the file classes can
now be made a subclass of FileObject as weil as of its old
superclass, so that it has access to these shared variables. In this
way, the pool mechanism becomes unnecessary and could be
eliminated from the language.

4. implementation

4.1. Finding the Right Method lo Receive a Message

Qur implementation of muitiple inheritance is a compromise
between the extremes of strict runtime method lookup and
copying down inherited methods from all superclasses.

In the standard Smalltalk-80 system, methods inherited from
superclasses are looked up dynamicaily. This has the advantage
that the system is not cluttered with copied methods, and that
there are no copies to update when a method is edited. An
alternative would be to copy the inherited methods down into each
subclass. This would make finding the methods easier at runtime,
at the expense of greater code size and updating complexity.

In our implementation of multiple inheritance, the standard
dynamic lookup scheme is used for methods on the chain
consisting of the first superciass of each class. If a class C has
more than one superclass, at the time C is created it checks each
message to which it can respond. if the appropriate method
would be found by the dynamic lookup, nothing is done. However,
if the appropriate method is in some other superclass, then the
cade for that method is recompiled in C's method dictionary, so
that it will be found at run time.

Finally, if there are conflicting inherited methods for a given
selector, an error method is compiled in C for that selector and the
user is notified. These error methods are put into a special
category. making it easy for the user to browse to them and to
resolve the conflicts as necessary.

4.2. Implementation of Compound Seiectors -

As described in Section 2.2, the programmer ¢an access
inherited methods using constructs such as seif Object.copy,
seif supercopy, and self allinitialize. To implement these
extensions, we changed the Smailtalk parser to treat compound
selectors as single symbois, so that the code that is compiled in C
for e.g. self B.copy actually sends the selector B.copy. The first
time this is exacuted, no method for 8.copy will be found. When
this occurs, the interpreter invokes Object
messageNotUnderstood. The usual behavior at this point is o
bring up an error window. However, we modified Qbject
messageNotUnderstood to first check for comgound selectors. i
one is found, then the system attempts ig compiie an appropriate
method for that compound selector by first verifving that 8 is a
superclass of C, and then looking for a copy method in 8 or its
superciasses. If one is found, that method is recompiled in C
under the selector B.copy. The system then resends the message,
whereupon it will find the newly inserted method. The next time
B.copy is sent, this method will be found, making the operation
efficient. Selectors such as super.copy and allinitialize are
handled by the same mechanism.

4.3. nstance State

A subclass inherits all the instance field requirements of its
superclasses, and can specify additional fields of its gwn. There is
only one copy of fields inherited from a superclass via two
inheritance paths. In our current implementation, it is an error if
there are different inherited instance fields with the same name.
{One of our previous experimental implementations [Borning 80]
included a mechanism similar to the compound selector construct
that allowed the programmer to disambiguate conflicting field
names. We may re-introduce this mechanism if the present
restriction proves too burdensome.)

To access or store into instance fields, the bytecodes produced
by the Smalitalk compiler include instructions such as “load
instance field 1". it is of course essential that code inherited from
superclasses use the correct field positions for the subclass. Our
scheme takes care of this in the following manner. The instance
fields are arranged so that the fields inherited from the
superclasses on the dynamic lookup chain have the same
positions as they do in the superciasses. {This is the same
situation as in single-superclass Smailtalk.) In general, fields
inherited from other superclasses won't be in the same pasitions,
but when the code for methods from these other supercliasses is
recompiled into the new subclass, the field positions are adjusted
appropriately. As an optimization, before recompiling a method
from a superclass the system checks if the offsets of all the fialds it
references are the same in the subclass. If this is the case, then
the system simply copies a pointer to the original method, rather
than recompiling it.

238

4.4. Dynamic Updating

In the Smalltalk environment, the user can add, delete, and edit
methods incrementally, and then immediately make use of the
changed code. In our muitiple-inheritance implementation, some
updating may be necessary when such changes are made. !f a
method is edited which has been recompiled or copied into some
subclasses, then the newly edited method is recompiled or copied
into subclasses as necessary. Similarly, if 2 method is added or
deleted, it may affect which inherited method should be used, and
may require changes in the copied inherited methods. Again, the
system takes care of this updating automatically,

i methods with compound selectors {e.g. super.printCn:} have
been automatically compiled into some subciasses, then these
methods may be invalid as well. Each such method that may no
longer be valid is simply deleted; as described above, it will be
recompiled automaticaily the first time a message is sent that
invokes it.

4.5. A Note on the implementation Process

The changes required to add multiple inheritance to Smalltaik-
80 are only a few pages of Smalltalk code. For example, changing
the Smailtalk syntax to allow compound selectors of the form
Point.copy or Point. + required a change to only one method.
Moreover, no changes to the Smalitaik-80 virtual machine were
required. There are few other programming environments in
which such a fundamental extension could be made so easily.

5. Relation to other Work

A number of other systems have used multiple inheritance.
Among the systems implemented in Smalitalk, the constraint
laboratory ThinglLab [Borning 81] and the PIE knowledge
representation language [Goldstein and Bobrow 80] both
supported multiple inheritance. The authors have aiso

- implemented some experimental predecessors of the present

system {Borning 80}

Some extensions to Lisp allow the use of similar object-oriented
programming techniques. The “Havors system” in MIT Lisp
Machine Lisp [Cannon 80] allows an object to be defined using
several Havors (analogous to multiple superclasses); this system

also contains an extensive repertoire of method combination
technigues for combining inherited information. Another object-
ariented Lisp extension with multiple inheritance is the LOOPS
system [Bobrow and Stefik 82], implemented in interlisp.

The Traits system [Curry 82], imbedded in the Mesa system, is
yet another multiple inheritance implementation. it has received
extensive use in the coding of the Xerox Star office information
system.

[Birtwistie 73]

[Bobrow and Steli

[Borning 80)

{Boming 81}

[Cannon 80]

[Curry 82]

{Goldberg 82]

References

Birtwistle, G.M., Dahl, O.-J., Myhrhaug, B.,and
Nygaard, K. :

SIMULA Begin.

Auerbach Press, 18973

k 82}

Bobrow, D.G., and Stefik, M.J.

iLOOFS: An Object Criented Programming
System for Interlisp.

1882,

Borning, AH.

Multiple Inheritance in Smailtatk.

1980.

Unpublished report, Leaming Research Group,
Xerox PARC.

Borning, A.H.

The Programming Language Aspects of
ThingLab, A Constraint-Oriented Simulation
Laboratory.

ACM Transactions on-Programming Languages
and Systems 3(4):353-387, October, 1981.

Cannon, H.L

Flavors.

Technical Report, MIT Artificial Intelligence
Lab, 1980.

Curry, G., Baer, L., Lipkie, D.. and Lee. B.

Traits: An Approach to Multiple Inheritance
Subclassing.

In ACM-SIGOA Conterence on Office
Automation Systems. ACM, June, 1982.

Goldberg, A.J., Robson, D., and Ingalls, D.H.H.

Smalitaik-80: The Language and its
Implementation.

1982.

Forthcoming book.

[Goldstein and Bobrow 80]

[ingalls 78}

[LRG 81}

Goldstein, L.P., and Bobrow, D.G.

Extending Object Oriented Programming in
Smalitatk.

In Proceedings of the Lisp Conference.
Stanford University, 1980.

Ingalls, D.H.H.

The Smalltalk-76 Programming System: Design
and Implementation.

In Proceedings of the Fiith Annual Principles of
Programming Languages Symposium,
pages 9-16. ACM, January, 1978.

The Xerox Learning Research Group.
The Smalitalk-80 System.
Byte 6{8):36-48, August, 1981.

nnsy

-

T e

By

T i e ML RO T ST

Faesrie .

Part 4: Erratain Smalitalk-80: The Language
andits Implementation

There are some known errors in the Virtual Machine Specification in Part Four of
Smalltalk-80: The Language and its Implementation. Please let us know if you find any
others.

The following pages list the errors in the second printing which has only the line "Reprinted
with corrections, May 1983" on the Library of Congress page. The first printing does not
have this line (but does have the same errors). The third printing, which should have a
second " Reprinted with..." line, should have these corrected. In addition to the errors noted
on the following pages, there is one extra error in the first printing, and three in the first,
second, and possibly the third.

1. (pp. 612-616). (First printing only) Two asterisks discriminating required from optional
primitives are in the wrong place. The affected primitives should read:

Primiti!e Index Class-Selector Optional/Required
12 Smaliinteger // Optional
13 Smallinteger quo: Required

2. (p. 632) primitiveAtEnd is specified as testing whether index > = length. This test is not
necessary.

3. (p. 636) primitiveAsObject sends the message hasObject:, which is not defined. Its
definition is a check to see whether the argument oop is a valid object. For example, if
your memory system has zero for a reference count of free chuncks and free oops, and non-
zero for valid objects, then this is just a test for the reféfence count being zero.

4. (p. 637) primitiveNewMethod is defined to initialize the literal frame of the method to
0 it should initialize it to nil. This code could be in primitiveNewMethod. or be a change
0 allocate:odd:pointer:extra:class: (p. 685).

Image Bugs Peter Lee

. Dept. EECS. ,U.CBerkeiey

Code for the class method "fromString:" in class String now reads as follows:

IString class methodsFor: ‘instance creation’!

fromString: aString
“Answer a new String that is a copy of the argument, aString.”

[newString/
newString « self new: aString size .
aString size do:
[:i [newString at: i put: (aString at: i)].
tnewString

it should be:

IString class methodsFor: ‘instance creation’!

fromString: aString
“Answer a new String that is a copy of the argument, aS tring.”

[newStringf
newString « self new: aString size.
1 to: aString size do:
(21 [newString at: i put: (aString at: i)].
tnewString

Book bugs Dave Robson, Glenn Krasner
Systems Concepts Laboratory Xerox PARC

There is a small discrepancy berween the specification of the object-memory in Chapter 30 and
Trace 1 (all memory references) provided with the licenses. Scartered throughout this trace are a
few lines that represent memory references that the object memory specified in Chapter 30 would
not make. For example, the trace of the first return bytecode looks like

t{method) of false

11043 pointer: 1 = 293
38738 pointer: 0 = 2
38738 pointer: 1 « 2

22 pointer: 2 = 57357 *
11048 pointer: 3 = 27492
110438 pointer: 5 = 25286
11043 pointer: 3 = 27492
11048 pointer: 1 = 293
11048 pointer: 2 = 9
11048 pointer: 10 « 4
27492 byte: 145 = 107

The memory reference represented by “the line with the asterisk (and similar lines are probably
found in similar places throughout Trace 1) is not necessary.

The waces are made by a Smalltaik-80 implementation of the virtual machine. The bytecode
interpreter part of that implementation is identical to the code in Chapters 27, 28, and 29; however,
the object memory part differs from the code shown in Chapter 30. In particular, it determines
whether an object conuins pointers by loading the instance specification from the object's class.
This happens in the recursive freeing routine which is often invoked in a return bytecode. The
code in Chapter 30, on the other hand, looks at the "contains pointers” bit in the object table enuy
for the object. which is more efficient The spurious lines identify the unnccessary memory access
for the class’ instance specification.

Thanks to Ben Cutler and Chris Hudak at Yale for pointing out this discrepancy, and Dave Robson
for identifying its source.

Blue Book Bugs Geoflrey Poole

International Technical Group, Citibank , Brussels

Page 631 in method forAllOtherObjectsAccessibleFrom:suchThat:do:,

size ¢ HugeSize
ifTrue: [...]
ifFalse: [self heapChunkOf: current
word: size + [put: offser].
should be

size < HugeSize

ifTrue: [...]
ifFaise: [self heapChunkOf: current
word: size put: offser/.

otherwise, the word indexed is not the "extra” word hit the lanoth wnrd Af tha nave Aliaas

page 84

page I8S1
page 555
page 556
page 357
page 558
page 559
nage 578
page 610
page 614
page 617

*

page 623
*

page 630
page 650
page 637
page 669
*®

page 686
*

page 687
page 688
*

page 709
page 711

0 =>7350

remove repeated definition of “location:”
‘unary’ => "binary’

‘unary’ => 'binary’

‘unary’ => ‘binary’

unary’ => 'binary
‘unary’ => ‘hinary
"MethodContext’ => "CompiledMethod” (3 times)

add paragraph about circular structures

‘value:” =>"value’

tests for negative and isIntegerValue replaced by extractBits
includes paste-up

16-bit ficld value change

includes paste-up

3

’

2 =>%
128" <=5 "130°
6 =5

initialize "objectPointer’ and "LastFreeChunkList’” => 'BigSize’ (2 times)
includes paste-up ‘
rearrange conditionals

includes paste-up

load” => "feteh’

initialize "classPointer’

includes paste-up

add 586’

562" =>'622

- — e e — e

84

Metaclasses

T

the search for the response to initialBalance: begins in FinancialHistory
class, i.e., in the class methods for FinancialHistory. A method for that
selector is found there. The method consists of two messages:

1. Send super the message new. ' 1350
2. Send the result of 1 the message setlnitialBalance:@

The search for new begins in the superclass of FinancialHistory class,
that is, in Object class. A method is not found there, so the search con-
tinues up the superclass chain to Class. The message selector new is
found in Class, and a primitive method is executed. The result is an
uninitialized instance of FinancialHistory. This instance is then sent the
message setlnitialBalance:. The search for the response begins in the
class of the instance, i.e., in FinancialHistory (in the instance methods). A
method is found there which assigns a value to each instance variable.
The evaluation of

FinancialHistory new h -

is carried out in a similar way. The response to new is found in
FinancialHistory class (i.e., in the class methods of FinancialHistory). The
remaining actions are the same as for initialBalance: with the exception
of the value of the argument to set!nitialBalance:. The instance creation
methods must use super new in order to avoid invoking the same meth-
od recursively.

o

Initialization of
Class Variables

AN ot e e d e 5o s A

The main use of messages to classes other than creation of instances is
the initialization of class variables. The implementation description's
variable declaration gives the names of the class variables only, not
their values. When a class is created, the named class variables are cre-
ated, but they all have a value of nil. The metaclass typically defines a
method that initializes the class variables. By convention, the class-
variable initialization method is usually associated with the unary mes-
sage initialize, categorized as class initialization.

Class variables are accessible to both the class and its metaclass. The
assignment of values to class variables can be done in the class meth-
ods, rather than indirectly via a private message in the instance meth-
ods (as was necessary for instance variables).

The example DeductibleHistory, this time with a class variable that
needs to be initialized, is shown next. DeductibleHistory is a subclass of
FinancialHistory. It declares one class variable, MinimumDeductions.

‘ wh‘ "‘ de

fiiid

i
i

i

ey AT

181

The Drunken Cockroach Problem

"; ' -- Drunken
Cockroach

‘Problem

We can use some of the collection classes to solve a well-known pro-
gramming problem. The problem is to measure how long it takes a
drunken cockroach to touch each tile of a floor of square tiles which is
N tiles wide and M tiles long. To slightly idealize the problem: in a giv-
en “step” the cockroach is equally likely to try to move to any of nine
tiles, namely the tile the roach is on before the step and the tiles imme-
diately surrounding it. The cockroach’s success in moving to some of
these tiles will be limited, of course, if the cockroach is next to a wall of
the room. The problem is restated as counting the number of steps it
takes the cockroach to land on all of the tiles at least once.

One straightforward algorithm to use to solve this problem starts
with an empty Set and a counter set to 0. After each step, we add to
the Set the tile that the cockroach lands on and increment a counter of
the number of steps. Since no duplication is allowed in a Set, we would
be done when the number of elements in the Set reaches N*M. The so-
lution would be the value of the counter.

While this solves the simplest version of the problem, we might also
like to know some additional information, such as how many times each
tile was visited. To record this information, we can use an instance of
class Bag. The size of the Bag is the total number of steps the cockroach
took; the size of the Bag when it is converted to a Set is the total num-
ber of distinct tiles touched by the cockroach. When this number
reaches N*M, the problem is solved. The number of occurrences of each
tile in the Bag is the same as the number of times the roach visited
each tile.

Each tile on the floor can be labeled with respect to its row and its
column. The objects representing tiles in the solution we offer are in-
stances of class Tile. A commented implementation of class Tile follows.

- —— wa— — e AP CE——
class name Tile
superclass Object

\ instance variable names location
floorArea

-
e e me— ., = - — — =

instance methods
accessing

focation
~ Answer the location of the receiver on the floor.”
tlocation
decsationraloint,,
L W ERTVSFPETEY S-SR 2
s
location: aPoint
~Set the recewver * s location on the floor to be the argument, aPaint.”
tocation — aPoint

h

558

The Interpreter

terpreter’s state may have to be changed in order to execute a different
CompiledMethod in response to this new message. The interpreter’s old
state must be remembered because the bytecodes after the send must
be executed after the value of the message is returned.

The interpreter saves its state in objects called contexts. There will
be many contexts in the system at any one time. The context that rep-
resents the current state of the interpreter is called the active context.
When a send bytecode in the active context’s CompiledMethod requires
a new CompiledMethod to be executed, the active context becomes sus-
pended and a new context is created and made active. The suspended
context retains the state associated with the original CompiledMethod
until that context becomes active again. A context must remember the
context that it suspended so that the suspended context can be resumed
when a result is returned. The suspended context is called the new con-
text’s sender.

The form used to show the interpreter’s state in the last section will
be used to show contexts as well. The active context will be indicated by
the word Active in its top delimiter. Suspended contexts will say Sus-
pended. For example, consider a context representing the execution of
the CompiledMethod for Rectangle rightCenter with a receiver of 100@
100 corner: 200@ 200. The source method for Rectangle rightCenter is

rightCenter
1 self right @ self centery

The interpreter’s state following execution of the first bytecode is
shown below. The sender is some other context in the system.

Active
Method for Rectangle rightCenter
112 push the receiver (seif) onto the stack
® 208 send a unary message with the selector in the first literal (right)
112 push the receiver (self! onto the stack
209 send the unary message with the selector in the second literal (center)
207 send the unary message with the selector y
187 send t‘léuﬁ-y message with the selector @
124 return the object on top of the stack as the value of the message
(rightCenter)
literal frame
' #right
#center
Receiver 100@ 100 corner: 200@ 200
Arguments
Temporary Variabies
Stack 100@ 100 corner: 200@ 200

Sender @

Yao o

LR,

}

G 0 el Wb s gy

" The Implementation

After the next bytecode is executed, that context will be suspend;i

object pushed by the first bytecode has been removed to be used as =
receiver of a new context, which becomes active. The new active ... ‘“‘. ;
is shown above the suspended context. .yt

Active

Method for Rectangle right

1 push the vaiue of the receiver’s second instance variabl B
P e (oomar) to

206 send a unary message with the selector x
124

Receiver
Arguments

Temporary Variables

Stack

Sender @

Suspended

Method for Rectangle rightCenter
112 push the receiver (self) onto the stack
208 send a unary message with the selector in the first literal (right) at _‘
112 push the receiver (self) onto the stack T

209 send the unary message with the selector in the second literal (cmm
207 send the unary message with the selector y =

187 sendm-—-p message with the selector @

124 return the object on top of the stack as the value of the meme
(rightCenter)

literal frame
#right
Hcenter

Receiver 100@ 100 corner: 200@200
Arguments

Temporary Variables

Stack

Sender @

o
557

The Interpreter

B - ' The next cycle of the interpreter advances the new context instead of
the previous one.

E Active
; Method for Rectangle right
g 1 push the value of the receiver’s second instance variable (corner) onto the
. stack
s » 206 send a unary message with the selector x
4 124 return the object on top of the stack as the value of the message (right)
: Receiver 100@ 100 corner: 200@ 200
L=, Arguments

.-‘ A Temporary Variables
Stack 200@ 200

Sender @

Suspended
Method for Rectangle rightCenter
112 push the receiver (self} onto the stack
208 send a unary message with the selector in the first literal (right)
» 112 push the receiver (self) onto the stack
209 send the unary message with the selector in the second literal (center)

W message with the selector y
h \“ai‘ﬂ 187 send t message with the selector @
124 return the object on top of the stack as the value of the message
(rightCenter)

literal frame
fright
#center

Receiver 100@ 100 corner: 200@ 200
Arguments
Temporary Variables

Stack

Sender @

IR

. In the next cycle, another message is sent, perhaps creating another
E: context. Instead of following the response of this new message (x), we

A
5

)

b FRRIEL S o ko i, B b 3 ek bl

it

The Implementation

‘0 W\o-uw‘ -

will ékip to the point that this context returns a value (to right).
the result of x has been returned, the new context looks like this:

Active

Method for Rectangle right

1 push the value of the receiver’s second instance variable (comaf) on
stack

206 send & unary message with the selector X
» 124 return the object on top of the stack as the value of the message (right)

Receiver 100@® 100 corner: 200@200
Arguments
Tempaorary Variables

Stack ‘ 200

Sender @

Suspended

Method for Rectangle ﬁghtCenter
112 push the receiver (seif) onto the stack

208 send a unary message with the selector in the first literal (right)
» 112 push the receiver (self) onto the stack
209 send the unary message with the selector in the second literal (center)
207 send the unary message with the selector y
187 send tﬁ{t—-g message with the selector @ '
124 return the object on top of the stack as the value of the mmJ
(rightCenter)
literal frame
#right
itcenter
Receiver 100@ 100 corner: 200@ 200
Arguments

Temporary Variables

Stack
Sender &

The next bytecode returns the value on the top of the active context
stack (200) as the value of the message that created the context (right
The active context’s sender becomes the active context again and th
returned value is pushed on its stack.

559
The Interpreter

Active

Method for Rectangle rightCenter

112 push the receiver (seif) onto the stack
208 send a unary message with the selector in the first literal (right)
» 112 push the receiver (self) onto the stack
209 send the unary message with the selector in the second literal (centen)

207 send the unary message with the selector y
187

8 send the wwass message with the selector @

124 return the object on top of the stack as the value of the message
(rightCenter)

literal frame
#right
#center

o yanry

Receiver 100@ 100 corner: 200@ 200
Arguments
Temporary Variables

Stack 200

Sender @ '

The contexts illustrated in the last section are represented in the sys-

. Contexts tem by instances of MethodContext. A MethodContext represents the ex-

ecution of a CompiledMethod in response to a message. There is another
type of context in the system, which is represented by instances of
BlockContext. A BlockContext represents a block in a source method
that is not part of an optimized control structure. The compilation of
the optimized control structures was described in the earlier section on
jump bytecodes. The bytecodes compiled from a nonoptimized control
structure are illustrated by the following hypothetical method in Collec-
tion. This method returns a collection of the classes of the receiver’s ele-
ments.

classes
tseif collect: [;element | element class]

Collection classes requires 1 temporary variable

112 push the receiver (seif) onto the stack

137 push the active context (thisContext) onto the stack

118 push the Smallinteger 1 onto the stack

200 send a single argument message with the selector blockCopy:

164,4 jump around the next 4 bytes

104 pop the top object off of the stack and store in the first temporary frame

location teiement)

R O gy

- -4 A u&w.d'ﬁq‘d.du [N SRR T

e geegoiEab

578
Specification of the Virtual Machine

depth and the number of temporary variables needed is greatexj than
twelve. The smaller MethodContexts have rcom for 12 and the larger

have room for 32. .

largeContextFlagOf: methodPointer
1self extractBits: 8 10: 8
of: (self headerOf. methodPointer)

. /The literal count indicates the size oﬁhe s literal frame.
Come\\q.b Mt"ké This, in turn, indicates where thefMEMTUCTHEx)'s bytecodes start.

fiteralCountOf: methodPointer

y h“_‘..-H‘ ,C‘__.‘. tself literalCountOfHeader: {self headerOf: methodPointer)
] gL.;\c) - _v_(titeralCountOfHeader: headerPointer
réme = 1self extractBits: 9 to: 14
Coa oot ™ .t '3, of: headerPointer

?f"f"" ‘c""" he object pointer count indicates the total number of object pointers in
including the header and literal frame.

objectPointerCountOf: methodPointer
1(self literalCountOf: methodPointer) + LiteralStart
The following routine returns the byte index of the first bytecode of a
CompiledMethod.

initiallnstructionPointerOfMethod: methodPointer
t((self literalCountOf: methodPointer) + LiteralStart) - 2+1

CompiledMethod takes and whether or not it has an associated primi-
tive routine. :

flagValueOf: methodPointer
1self extractBits: 0 to: 2
of: (self headerOf: methodPointer)

The eight possible flag values have the following meanings:

flag value meaning

0-4 no primitive and O to
4 arguments

5 primitive return of self
(0 arguments)

6 primitive return of
an instance variable
(0 arguments)

The flag value is used to encode the number of arguments a

e R
Vi AT
éf??"ﬁrfi‘ T
J.& T A g

e b e S

610

~ -
P 1 o & _’ o ;g
T = T i :L:"‘" §

I ﬁﬂmm.w_"-v v

W3 LY

i
4l

i L\“..‘._L.,. u«o\u\:ﬂ)

Formal Specification of the Interpreter

memory increaseReferencesTo: resultPginter.
self returnToActiveCentext: contextPointer.
self push: resultPointer.

memory decreaseReferencesTo: resultPointer

This routine prevents the deallocation of the result being returned by
raising the reference count until it is pushed on the new stack. It could
also have pushed the result before switching active contexts. The
returnToActiveContext: routine is basically the same as the
newActiveContext: routine except that instead of restoring any cached
fields of the context being returned from, it stores nil into the sender
and instruction pointer fields.

returnToActiveContext: aContext
memory increaseReferencesTo: aContext.
self nilContextFields.
memory decreaseReferencesTo: activeConiext.
activeContext — aContext,
self fetchContextRegisters
nilContextFields
memory storePointer: Senderindex
ofObject: activeContext
withValue: NilPginter.
memory storePointer: insiructionPointerindex
ofObject: activeContext
withValue: NilPgcinter

D

Duc to the nature of BlockContexts, this implementation of the return
bytecodes will create circular structures. Implementations of the object
memory that rely exclusively on reference counting to reclaim unused
storage will not properly deallocate the objects that make up these circular
structures. To avoid this problem, the following additional mechanism
should be included. If the active context is a BlogkContext and the
context being returned to (aContext) is on the sender chain of the active
context, the sender pointers of the intervening contexts on the sender chain
should be sct to pil

e iEe .
e 3 ad
S Tels
Lo o a4 4,
- e > . by

il S SRR At p g W AT it ., 3~ gena SNy [T . e g

- EL e e

Formal Specification of the Primitive Methods

59
60

61

62

63

65°
66°
67°
68
€9
70

m

72
73
74
75

76

77
78
79
8o*
81

g2

LargeNegativelnteger digitAt:
LargePositivelnteger digitAt:
Object at:

Object basicAt:
LargeNegativelnteger digitAt:put:
LargePaositivelnteger digitAt:put:
Object basicAt:put:

Object at:put:

ArrayedCollection size
LargeNegativelnteger digitLength
LargePositivelnteger digitLength
Object basicSize

Object size

String size

String at:

String basicAt:

String basicAt:put:

String at:put:

ReadStream next ReadWriteStream next

WriteStream nextPut:
PositionableStream atEnd
CompiledMethod objectAt:
CompiledMethed objectAt:put:

Behavior basicNew Behavior new

Interval class new
Behavior new:
Behavior basicNew:
Object become:

Obiject instVarAt:
Object instVarAt:put
Object asOop

Object hash

Symbol hash
Smallinteger asObject
Smailinteger asObjectNoFail
Behavior somelnstance
Object nextinstance

CompiledMethod class newMethod:header:

ContextPart blockCopy:
BlockContext value:value:value:
BlockContext value)
BlockContext value:
BlockContext value:value:

BlockContext valueWithArguments:

Object perform:with:with:with:

| E——

Mo e)

REEH AR AT T SRR 12, DBl A T i, 4 10K AB L e 810 R TRt o

fidy

ARV S SR Ay B Y

o

617
Formal Specification of the Primitive Methods

Many of the primitives manipulate integer quantities, so the interpret- i
er includes several routines that perform common functions. The S
poplnteger routine is used when a primitive expects a Smallinteger on
the top of the stack. If it is a Smallinteger, its value is returned; if not, a
primitive failure is signaled.

pcPinteger \ l
| intagerPointer | il

integerPointer — self popStack.

. ,) wm
self success: (memory isintegerObject: integerPointer). QPA
self success

ifTrue: [tmemory integerValueOf: integerPointer]

;n“&xﬂv‘v“\"‘“-\n = n G
e

n

Recall that the fetchinteger:ofObject: routine signaled a primitive fail-
ure if the indicated field did not contain a Smallinteger. The
pushinteger: routine converts a value to a Smalllnteger and pushes it on
the stack.

pushinteger: integerValue N
self push: {(memory integerObjectOf: integerValLV qan

Since the largest indexable collections may have 65534 indexable ele-
ments, and Smalllntegers can only represent values up to 16383, primi-
tive routines that deal with indices or sizes must be able to manipulate
LargePositivelntegers. The following two routines convert back and forth
between 16-bit unsigned values and object pointers to Smaillntegers or
LargePositivelntegers.

n°nt'n' r\°‘
Tz

(selk ..&m*“'-"ﬁ
'\-\

positive 16BitintegerFor: integerValue

-
| newlLargeinteger | "f'-' Y \w&l‘
' i PO ‘H""u'

n

T oo neratd 3

\‘_’* w :'“s ifTrue: [Tmemory integerObjectOf: integerValue).
% . newlargelnteger — memory instantiateClass:
Y - .
ClassLargePositivelntegerPointer
withBytes: 2.

.

“o\.g‘. 'H" C.—-'\' SL-'\') memaory storeByte: 0
ot e Seamma Q"f"‘" ofObject: newlargeinteger

;“*3 _nn \._‘ SL..‘A withValue: (self lowByteOf: integerValue). «“'
e Y

memory storeByte: 1

T e o hocirahnl ofObject: newLargelnteger .
.l , \\._‘ withValue: (self highByteOf: integerValue).
?ofv ‘o Ay (e TnewLargelnteg
L] e S :
;)(H?\“"’" vla(\'\u.\ positive 16BitValueOf: integerPointer ée-lv'\> ‘ !

B-‘ 3&.*"‘:& | value |

She.ca, CWVWe (memory isintegerObject: integerPointer) -

Yoo Wy conlas Tl
L '\'Lt- ?0‘\“\“ :.-A\c..a-“a |
<20 “‘\"\"ac\.&t) ?‘*SL"“()

m..__...._..m,......._,_.

VQ o.\—- 0\"" L

628

Formal Specification of the Primitive Methods

N,\-,‘. —-__ Lot c..-.é. ?oq\ﬂe\ =
R VAVSian & Hart Qoo
T b, SoMe g
Qo °\°““‘1 %ﬂ- S?su.
wdieted wnd Aiktg
T e = of ¥ Yheo

\OC&’%‘\;#‘ ’ \"&th H “0?”“.

The primitiveAt and primitiveAtPut routines simply fetch or store one ™ol

subscript: array with: index
| class value |
class — memory felchClassOf: array.
(self isWords: class)
ifTrue: [{self isPointers: class)
ifTrue: [Tmemory fetchPointer: index— 1
ofCbiject: array]
#False: [value — memory fetchWord: index— 1
ciCbject: array.
Iself positive 16BitintegerFor: value}]
ifFalse: [value — memory fetchByte: index—1)
ofObject: array.
. tmemo.ry integerObjectF)f: value} - (u._\
subscript: array with: index storing: value
| class v |
class — memory fetchClassOf: array.
{seif isWords: class)
ifTrue: [(se!f isPointers: class)
ifTrue: [tmemory storePointer: index— 1
ofObject: array
withValue: value]
ifFalse: [v. — self positive 16BitvValueOf: value.
self success ifTrue:
[tmemory
storeWord: index—1 == ~
ofObject: array
withValue: v]]} :
. C\osg
ifFalse: [self success: (memory isintegerObject: value).
self success ifTrue: Ue
[tmemory storeByte: index—1 ‘
ofObject: array
withValue: (self lowByteOf:
{memory integerValueCt
value)}j}

the indexable fields of the receiver. They fail if the index is not a
Smallinteger or if it is out of bounds.

— rimitiveAt

P e’“

} index array arrayClass result |

index — self positive16BitValueOf: self popStack.
array — self popStack.

arrayClass — memory fetchClassOf: array.

self checkindexableBoundsOf; index

in: array.

O(ﬂq'

hide S YR

R 4 ot

SN U 3w oAk e daoy ekt

LA e

LA B A VR R Y P A N T T N S L S e N Y L L LT

L e

630 A ,
Formal Specification of the Primitive Methods

actually stores 8-bit numbers in byte-indexable fields, but it communi-
cates through the at: and at:put: messages with instances of Character. A
Character has a single instance variable that holds a Smallinteger. The
value of the Smallinteger returned from the at: message is the byte
stored in the indicated field of the String. The primitiveStringAt routine
always returns the same instance of Character for any particular value.
It gets the Characters from an Array in the object memory that has a
guaranteed object pointer called characterTablePointer.

primitiveStringAt
| index array ascii character |
index - self positive 168itValueOf: se!f popStack.
array — ‘self popStack.
self checkindexableBoundsOf: index
in: array.
self success .
ifTrue: {ascii — memory integerValueOf: (self subscript: array
with: index).
character — memory fetchPointer: ascii
ofObject: CharacterTablePointer].
self success '
ifTrue: [self push: character]
itFaise: [self unPop: 2}
initializeCharacterindex
Charactervalueindex — 0

PRV RRT PRI R N L TS B

The primitiveStringAtPut routine stores the value of a Character in one of
the receiver’s indexable bytes. It fails if the second argument of the
at:put: message is not a Character.

primitiveStringAtPut
| index array ascii character |
character — self popStack.
index — seif positive 16BitValueOf: self popStack.
array ~ self popStack.
self checkindexableBoundsOf: index
in: array.
self success: (memory fetchClassOf: character) = ClassCharacterPoinler
self success
ifTrue: [ascii — memory fetchPointer: CharacterValueindex
ofObject: character.
self subscript: array
with: index
storing: ascii].
self success
ifTrue: [self push: character]
ifFalse: [self unPopH
3

650
Formal Specification of the Primitive Methods

own, but that change the value of the other keys. The keys on
decoded keyboard only indicate their down transition, not their up tran.
sition. On an undecoded keyboard, the standard keys produce parame.
ters that are the ASCII code of the character on the keytop withoy;
shift or control information (i.e., the key with "A” on it produces the
ASCII for “a” and the key with “2” and “@” on it produces the ASCI
for “2”). The other standard keys produce the following parameters.

key parameter
backspace 8

tab 9

line feed 10

return 13

escape : 27

space 32

delete 127

For an undecoded keyboard, the meta keys have the following parame-

ters.
key parameter
left shift : 136
right shift 137
control 138
alpha-lock 139

For a decoded keyboard, the full shifted and “controlled” ASCII should
be used as a parameter and successive type 3 and 4 words should be

produced for each keystroke.
The remaining bi-state devices have the following parameters.

kev parameter

left or top "pointing device” \o
button

center “pointing device” 129
button

right or bottom "pointing device” \1_8
button

keyset paddles right to left 131 through 135

657

Heap Storage

segment: s word: W bits: firstBitindex to: lastBitindex
Return bits firstBitindex to tast8itindex of word

w of segment S.

segment: s word: W bits: firstBitindex to: lastBitindex put: value
Store value into bits firstBitindex to lastBitindex

of word w of segment s; return vaiue.

When it is necessary to distinguish the two bytes of a word, the left
(more significant) byte will be referred to with the index 0 and the right
(less significant) byte with the index 1. The most significant bit in a
word will be referred to with the index O and the least significant with
the index 15. Note that seif is an instance of class RealObjectMemory in
all routines of this chapter.

The most important thing about any implementation of the object
memory is that it conform to the functional specification of the object
memory interface given in Chapter 27. This chapter describes a range
of possible implementations of that interface. In particular, simple ver-
sions of some routines are presented early in the chapter and refined
versions are presented later as the need for those refinements becomes
clear. These preliminary versions will be flagged by including the com-
ment, ” **Preliminary Version®*”, on the first line of the routine.

Heap Storage

Figure 30.1

In a real-memory implementation of Smalltalk, all objects are stored in
an area called the heap. A new object is created by obtaining space to
store its fields in a contiguous series of words in the heap. An object is
destroyed by releasing the heap space it occupied. The format of an al-
located object in the heap is shown in Figure 30.1. The actual data of
the object are preceded by a two-word header. The size field of the
header indicates the number of words of heap that the object occupies,
including the header. It is an unsigned 16-bit number, and can range

from 2 up to 65,58

size =N+ 2
Header
CLASS
Field O
Field 1
Body
Field N — 2
Field N — 1

LRt TR R R T

Yoo

1 —_——t g
L
v

o T o v -...A..,—..._...V: i

-

e e e e ve e

o R sy

e e s o e 4

659
Allocation and Deallocation

attemptToAllocateChunk: size
| objectPointer |
objectPointer ~ self attemptToAllocateChunkinCurrentSegment: size.
objectPointer isNil ifFalse: [fobjectPointer).
110 HeapSegmentCount dac:
[
currentSegment — currentSegment + 1.
currentSegment > LastHeapSegment
ifTrue: [currentSegment ~ FirstHeapSegment].
self compactCurrentSegment.
cbjectPointer
~ self attemptToAllocateChunkinCurrentSegment: size.
objectPointer 1sNil fFalse: [totjectPointer]].

FATHYS (til
“R The attemptToAllocateChunkinCurrentSegment: routine searches the cur-
rent heap segment’s free-chunk lists for the first chunk that is the right
size or that can be subdivided to yield a chunk of the right size. Because
most objects are smaller than BigSize and most allocation requests can
be satisfied by recycling deallocated objects of the desired size, most al-
c\ww ¢ locations execute only the first four lines of the routine.

‘e attemptToAllocateChunkinCurrentSegment: size
| objectPointer predecessor next availat!eSize excessSize newPointer |
size < BigSize
ifTrue: [objectPointer ~ self removeFromFreeChunkList: size].
“ w\ objectPointer notNil
o\{?& Q‘w‘“ et ifTrue: [TobjectPointer]. "small chunk of exact size handy so use it”
predecessor — NonPointer.
“remember predecessor of chunk uncer consideration”
bjectPointer — self headOfFreeChunkList: ik B‘:S"—‘
inSegment: currentSegment.
lr LJ; *the search loop stops when the end of the linked list is encountered”
QQ_Q. C.\' [objectPointer = NonPointer] whilefFaise:
\(— [availlableSize — self sizeBitsOf: objectPointer.
Q“‘o ‘-‘Q availableSize = size
ifTrue: “exact fit —remove from free chunk list and return”
[next — self classBitsOf: objectPointer.
“the link to the next chunk”
predecessor=NonPointer
ifTrue: “itwas the head of the list; make the nextitem the head
[se!f headOfFreeChUNKLiSt: ettt mm . &.§§ e
inSegment: currentSegment put: nexj
ifFalse: ”it was between two chunks. link them together”
[self classBitsOf: predecessor
put: next].
TobjectPointer}.

BN MRSET R ACAEL T

",
N

MRt

o b

-

A

686

Formal Specification of the Object Memory

CompiledMethods

Thia & e
Her. gerg sheald

(PN

A CompiledMethod is an anomaly for the memory manager because its
data are a mixture of 16-bit pointers and 8-bit unsigned integers. The
only change needed to support CompiledMethods is to add to
lastPointerOf: a computation similar to that in the bytecode interpret-

er’s routine bytecodeindexOf:. MethodClass is the object table index of
ComgpiledMethod.

lastPointerOf: objectPointer
| methodHeader |
(self pointerBitOf: objectPointer) =0
ifTrue:
{(self classBitsOf: objectPointer) =MethodClass
ifTrue: [methodHeader — self heapChunkOf: objectPointer
word: HeaderSize.
tHeaderSize + 1 + {{methodHeader bitAnd: 126)
bitShift: —1)]
_ ifFalse: [1HeaderSize]] : '
ifFalse: ' i
[1self sizeBitsOf: objectPointer]

Interface to the
Bytecode
Interpreter

The final step in the implementation of the object memory is to provide
the interface routines required by the interpreter. Note that
fetchClassOf: objectPointer returns IntegerClass (the object table index
of Smallinteger) if its argument is an immediate integer.

object pointer access

fetchPointer: fieldindex ofObject: objectPointer
1self heapChunkOf: objectPointer word: HeaderSize + fieldindex
storePointer: fieldindex
ofObject: objectPointer =
withValue: valuePointer
| chunkindex |
chunkindex — HeaderSize + fieldindex.
self countUp: valuePointer.)
self countDown: (self heapChunkOf: objectPointer word: chunkindex).
tself heapChunkOf: objectPointer word: chunkindex put: valuePointer

word access

fetchWord: wordindex ofObject: objectPointer
tself heapChunkOf: objectPointer word: HeaderSize + wordindex
storeWord: wordindex
ofObject: objectPointer
withValue: valueWord
tself heapChunkOf: objectPointer word: HeaderSize + wordindex
put: valueWord

@

s T

A etk gl |

687

Interface to the Bytecode Interpreter

oyi2 access

fetchByte: bytelndex ofObject: objectPointer
tself heapChunkCf: objectPointer byte: (HeaderSize-2 + byteindex)
storeByte: byteindex
ofObject: objectPointer
withValue: valueByte
1self heapChunkOf: objectPointer
byte: (HeaderSize+=2 + bytelndex)
put: valueByte

reference counting

increaseReferencesTo: objectPointer
self countUp: objectPointer

decreaseReferencesTo: objectPointer
self countDown: objectPointer

class pointer access

tetchClassOf: objectPointer
(self isintegerObject: objectPointer)
ifTrue: [1integerClass}
ifFalse: [1self classBitsOf: objectPointer}

length access

tetchWordLengthOf: objectPointer
1({self sizeBitsOf: objectPomter)-HeaderSize
fetchBytelLengthOf: objectPointer
r(selfba-é\/\/ordLengthOf: objectPointer)«2 — (self oddBItOf: objectPointer)

e A

object creation

instantiateClass: classPointer withPointers: length

| size extra |

size — HeaderSize + length.

extra — size < HugeSize ifTrue: (0] ifFaise: {1}

tself aliocate: size odd: 0 pointer: 1 extra: extra class: classPointer
InstantiateClass: classPointer withWords: length

| size |

size — HeaderSize + lengih.

tself allocate: size odd: 0 pointer: 0 extra: 0 class: classPointer
instantiateClass: classPointer withBytes: length

| size |

size — HeaderSize + ((length + 1/2).

tself allocate: size 0da: lengths \ 2 pomnter: 0 extra: 0 class: classPainter

688
Formal Specilication of the Object Memory

instance enumeration

—

initialinstanceOf: classPointer
0 to: ObjeciTableSize—2 by: 2 do:
[:pointer |
(self freeBitOf: pointer) =0
ifTrue: [(self fetchClassOf: pointer) =classPointer
ifTrue: [1pointer]]).

tNilPointer
instanceAfter: objectPointer
| classPointer |
=P biectPointer 10: ObjectTableSize—2 by: 2 do:
[-pointer |

wt-qj

-
ﬁjT;:u _.’U -“-\-“‘P&SS’D\-J

e/ (self freeBitOf: pointer)=0
i ifTrue: [(self fetchClassOf: pointer) =classPointer

tj » ifTrue: [1pointer]]]. C.\ ot

3 INilPointer U

b ;. pointer swapping - W
4 = swapPointersOf: firstPointer and: secondPointer B S ";

F 1 | tirstSegment firstLocation firstPointer firstOdd | |

= = firstSegment — self segmentBitsOf: firstPointer.

-

firstLocation — self locationBitsOf: firstPointer.

firstPointer — self pointerBitOf: firstPointer

firstOdd — self oddBitOf: firstPointer

sell segmentBitsOf: firstPointer put: (self segmentBitsOf: secondPoi
self locationBitsOt: firstPainter put: (self locationBitsOf: secondPointé
self pointerBitOf: firstPointer put: (self pointerBitOf: secondPointer)
self oddBitOt: firstPointer put: (self oddBitOf: secondPointer)

self segmentBitsOf: secondPointer put. firstSegment

self locationBitsOf: secondPointer put: firstLocaton.

self pointerBitOf: secondPointer put: firstPointer

self oddBitOf: secondPointer put: firstOdd

Taa)
s 205

integer access

—

#‘Wa w
0 Mk

integerValueOf: objectPointer
1objectPointer/2
integerObjectOf: value
I(value bitShift: 1) + 1
isintegerObject: objectPointer
t{obiectPointer bitAnd: 1) = 1
isintegerValue: valueWord
tvalueWord <= — 16384 and: [valueWord > 16834]

\J/

AT S ot P

it e ey

Pr-l:‘_l.)‘_\o 9n -
T AT,

4 i

708

Implementation Index

used on, 618-619, 627-632, 635, 639-641, 653,
658

stchContextRegisters, 584

defined on, 583

used on, 585, 610
itchinteger:ofObject:

defined on, 574

used on, 582-583, 608, 619, 631-632, 643, 646
ichPointer:ofObject:

defined on, 571, 686
itchWord:ofObject:

defined on, 571, 686
tchWordLengthOf:

defined on, 572, 687

used on, 627, 638-639, 641, 645
dindexOf:

defined on, 79

used on, 620
idNewMethodInClass:

defined on, 605

used on, 605
stContext

defined on, 644
edFieldsOf:

defined on, 591

used on, 627, 629, 634
gValueOf:

defined on, 578

used on, 580, 620

AllObjectsAccessibleFrom:suchThat:do:
defined on, 678
used on, 677, 683
AliOtherObjectsAccessibleFrom:suchThat:do:

defined on, 678, 680

used on, 678
2BitOf:

defined on, 662

used on, 671, 673, 684, 688
sh:

defined on, 587
iObject:

used on, 636
iderExtensionOf:

defined on, 580
iderOf:

defined on, 577
idOfFreeChunkLlistinSegment:
defined on, 666

used on, 666-667, 669, 671
dOfFreePointerList

defined on, 665

used on, 666

heapChunkOf:byte:
defined on, 663
used on, 687
heapChunkOf:word:
defined on, 663
used on, 663, 668, 678, 680-681, 684-686
highByteOf:
defined on, 575
used on, 617
homeContext, 584

defined on, 58 $2b
used on.on 583,%5-/ ’

increaseReferencesTo:
defined on, 571, 687
used on, 585, 610
initialinstanceOf:
defined on, 573, 688
used on, 637
initialinstructionPointerOfMethod:
defined on, 578
used on, 606
initializeAssociationindex
defined on, 599
initializeClassindicies
defined on, 587
initializeContextindicies
defined on, 581
initializeGuaranteedPointers
defined on, 576
initializeMessagelndices
defined on, 590
initializeMethodCache
used on, 605, 647
initializeMethodIndicies
defined on, 577
initializePointindices
defined on, 625
initializeSchedulerindices
defined on, 641
initializeSmallintegers
defined on, 575-576
initializeStreamindices
defined on, 631

initPrimitive

defined on, 616

used on, 618, 620
instanceAfter:

defined on, 573, 688

used on, 637
instancesOf:

used on, 637
instanceSpecificationOf:

defined on, 590
used on, 591 ~

methodClassOf:
defined on, 580
used on, 607

newActiveContext;, 610
defined on, 585
used on, 6086, 609, 639-640, 643

newMethod, 589
defined on, 587
used on, 588, 605, 620, 640-641

newProcess
defined on, 642
used on, 643

newProcessWaiting
defined on, 642
used on, 643-644
nilContextFields
defined on, 610
used on, 610
objectPointerCountOf:
defined on, 578
used on, 633-634
obtainPointer:location:
defined on, 670
used on, 670, 674
oddBitsOf:
defined on, 662
used on, 685, 688

ot:
defined on, 661-662
used on, 670
ot:bits:to:
defined on, 662
used on, 662
pointerBitOf:

defined on, 662

used on, 685-686, 688
pop:, 597

defined on, 585

used on, 590, 606, 639-640
popinteger

defined on, 617

used on, 622-624, 633-637
popStack, 597

defined on, 585

used on, 600-602, 609, 617, 620, 625,

628-639, 641, 647, 653

popStackBytecode

defined on, 601

used on, 598, 600
positive 168BitintegerFor:

defined on, 617

used on, 628-629

711 | pEUIRER:

Implementation Index : : ' "

pasitive 16BitValueOf: N ' t
defined on, 617-618
used on, 628-630, 634

i
primitiveAdd , TR
defined on, Q,‘L'Z_ ‘ Vel ;
primitiveAsObject I
defined on, 636 . 5,
used on, 633 N 1
primitiveAsQop t £ g
defined on, 636 i A
used on, 633 | YSIENIRS.
primitiveAt ! e .
defined on, 628 ‘ -;* -85 &
used on, 627 : B
primitiveAtEnd, 631 : e :
defined on, 632 ' i
used on, 627 l 4 !
primitiveAtPut, 628 gy 1
used on, 627 | BSPae -
primitiveBecome | L Ao
defined on, 635 [NN
used on, 633 T 5
primitiveBitAnd ’ ; i
defined on, 624 oy
used on, 619, 622 | 3
primitiveBitShift p
defined on, 624 |
used on, 619, 622 ; e
primitiveBlockCopy : 4
defined on, 638 ' : ok
used on, 637 [7
primitiveClass ' .
defined on, 653 1
used on, 619, 652 : e
primitiveDiv ’ fo3
defined on, 623 /<%,
primitiveDivide X
defined on, 622
used on, 619, 622
primitiveEqual _
defined on, 624) .
used on, 619, 622 ' . R S
primitiveEquivalent I T
defined on, 653 B v
used on, 619, 652 C B
primitiveFail PR PO -
defined on, 616 : I oA e b 4
used on, 574, 617-619, 625, 637 B T
primitiveFlushCache Ty s N i
defined on, 647 . ; 3
used on, 638 - fARRRR At

primitivelndex R
defined on, 587 . . '
used on, 588, 605, 620

PR

Part 5: Summary of System Interface
Components

In this scction, each main kind of menu and cursor, and each kind of view in the basic
Smalltalk-30 system is summarized. Fuller description of these interface componenets is
contained in Smalltalk-80: The Interactive Programming Environment. This section is intended
to summarize that information. The summary of the views consists of two or three diagrams of
the subviews of each view and a description of the various aspects of the view. The three

possible diagrams are:

Descriptions

Yellow-Button Menus

Dependencies

Indicates the kind of information that appears in the subview. If
TEXT is indicated, then the subview is a standard text editor. If
LIST MENU is indicated, then the subview contains a fixed list
menu.

Displays the pop-up menu that appears if the yellow button is
pressed while the cursor is in the subview. (The order of the menu
items might not be what you see on your display screen; the
ordering is easy to change and is a place where people’s personal
preferences show up. There may also be additional items.)

Arrows connécting the subviews indicate that actions carried out in
one subview (tail of the arrow) affect the information displayed in
another subview (head of the arrow).

The various aspects of the views that are covered in the textual descriptions include:

how accessed
how created
how terminated

blue button activity

red button activity

yellow button activity

The circumstances under which the view appears on the screen.
What, if anything, you must do to assist in displaying the view.

What you do to remove the view from the screen.

~ What items appear in the pop-up menu when you press the blue

button. "Default" indicates that the standard system view blue
button appears.

What selection actions you can take by pressing the red button.

What items appear in the pop-up menu when you press the yellow
button.

Each view may contain several subviews. These are labeled A, B,
C, and so on. The red, yellow, and blue button activities may

differ in each subview.

AN YA
i E

Ly

4

BAUBIL AN

B s LR L T RS LY YT R LN TNY S ETREE SRR TAMTL I TIE XE b e o St L e

accessible views

keyboard activity

message-sending

Smailltaik-80 Virtual Image Version 2

Which other views can be created as a result of actions in this view.
Only those accessible by selecting menu items are listed. Other
views can appear; for example, errors in evaluation create notifiers.

What keys on the keyboard can affect the view.

Ways of affecting the view by sending messages to it. Assumes
there is a variable referencing the view that is available to the user.

Part 5: Summary of System Interface Components

5.1—System Menus, Cursors, and Text Editor

5.1.1 System Menu

5.1.2 Standard System View Blue Button Menu
5.1.3 ScroliBars

5.1.4 Confirmers

5.1.5 Prompters

5.1.6 Cursors

5.1.7 Text Editing

Text Selection

Text Editing Yellow Button Menu

Issuing Commands Using Keys and the "Control" Key
Inserting Delimiters About a Selection

Menus provide an interface for obtaining information in the Smalltalk-80 system. FEach view
contains information, much of which can be edited. The yellow button is used to bring up a
menu of messages that can be sent to the view in order t edit its contents. The blue button is
used to bring up a menu of messages that edit the view itself. these are common to views

throughout the system.

5.1.1 System Menu

The menu obtained by moving the cursor into the light gray background area and then pressing
the yellow button is called the System Menu. The menu is shown in Figure 5.1.1.

restore display

exit project

project

file list

Redraws the display, getting rid of anything which is not known to the
control manager. Another effect of restoring the display is to reset the
cursor to the slanted arrow (normal) cursor.

It is possible to create several different collections of views of
information, each one called a project. Each project takes up an entire
display screen for the presentation of its views. A project is accessed
by creating a project view and then choosing the yellow button menu
command enter. Once inside a project, it is possible to return to the
project from which it was entered by choosing this command. At the
topmost project, this command is equivalent to restore display.

Creates a new project view. You are asked to designate a rectangular
area in which the project view is to be displayed.

Creates a view of the local files. You are asked to designate a

MR R B LRE,

Thdil arsaa

ARDIR I, AR

T,

36

browser

wcerkspace

system transcript

system workspace

save

quit

Smalltalk-80 Virtual Image Version 2

rectangular area in which a file list view is to be displayed.

Creates a new system browser that allows you to access hierarchically-
organized information about the Smailtalk-80 system itself. You are
asked to designate a rectangular area in which the browser view is to
be displayed.

Creates a blank area in which to edit text. You are asked to designate
a rectangular area in which the workspace is to be displayed.

Creates a view of the System Transcript. You are asked to designate a
rectangular area in which the transcript is to be displayed.

Creates a view of the System Workspace, any useful message
expressions that you can edit and evaluate, notably expressions about
accessing files, querying the system, and recovering from a crash. You
are asked to designate a rectangular area in which the workspace is to
be displayed.

Stores the complete image of the system in an external file.

When you are done working, select this command.

2 dliplay
Xt project

project

file fist

Tem tranIorpt

Figure 5.1.1. System Menu

Part 5: Summary of System Interface Components

5.1.2 Standard System View Blue Button Menu

When you press blue button while the cursor is inside a standard system view, a menu for
modifying the view appears. It looks as shown in the workspace in Figure 5.1.2.

under

move

frame
collapse

close

Selects a view (if one exists) that is both under the active view and
under the cursor.

Designates a new origin for the view. The view disappears with only
its label remaining, and the cursor changes to the shape of the origin
cursor. Move the cursor around. The label of the view tracks the
cursor. When you press the red button, the view reappears so that the
label is at the last location to which you moved it

Designates a new rectangular area for the view.

Replaces the view with an area containing its label only.‘

Erases the view from the display screen and deletes the view from the
system.

dridar

Figure 5.1.2. Standard System View Blue Button Menu

37

38 Smalitalk-80 Virtual Image Version 2

5.1.3 ScrollBars

A view on the screen may not be large enough to display all the information appropriate to that
view. Assume you wish to examine a large document of information, and that you have created
a view on the screen for this purpose: a view (or often called a window) is defined by mapping
from the area allotted on the display screen to a corresponding-sized area of the document. The
mapping determines how much document information can actually be displayed in the screen
view. The purpose of a scroll bar is to change the area of the document that can be seen in the
view. It is done in one of three ways.

scroll next The line of text nearest the cursor is moved to the top of the view.
Move the cursor into the scroll bar area, in the right one-third of the
rectangle and outside of the gray area. The cursor shape becomes that
of an up arrow. Click the red button. Scrolling occurs.

scroll previous The line of text at the top of the view moves to become the line
nearest to the cursor. Move the cursor into the scroll bar area, in the
left one-third of the rectangle and outside of the gray area. The
cursor shape becomes that of a down arrow. Click the red button.

Scrolling occurs.

jump ' Displays a view of the document beginning with a location in the
document relative to the gray area in the scroll bar. Move the cursor
into the scroll bar area, in the middle one-third of the rectangle and
outside of the gray area. The cursor shape becomes that of a right
arrow. Press the red button and hold. The gray area moves to the
cursor location and then tracks the cursor until the red button is
released. The displayed document jumps to the appropriate location.
While the red button remains pressed, a lighter gray image is left in
the scroll bar area to indicate the previous position of the gray area.

5.1.4 Confirmers

A confirmer is a "binary choice” menu. That is, a confirmer is a menu with two items in it,
where each choice represents opposing points of view. A confirmer consists of three parts, the
top part is a statement or question; the other two parts are possible opinions about the

Part 5: Summary of System Interface Components

statement or answers to the question. When the cursor moves over the two options, the shape
of the cursor changes to either a hand with the thumb pointing upward, or a hand with the
thumb pointing downward.

‘There are several places in the system where confirmers appear. In the system class browsers,
confirmers appear when you try to

- remove a class category

- remove a class

- remove a method from a class
- remove a message protocol

If the spelling corrector is invoked, in a workspace, in the code part of a system browser, or in a
notifier or debugger, it may propose a correction that will require your confirmation. Whenever
you ury to close a view whose content has not been saved, a confirmer will appear. If you try to
replace the contents of a view of text when the existing contents have not been saved, a
confirmer will appear to make certain that you want to discard text changes. And when you try
to delete a file listed in a file list view or you try to remove a dictionary entry listed in a
Dictionary inspector, a confirmer will appear to make certain that you really want to proceed
with the deletion.

Confirmers are instances of class BinaryChoice. You can browse all references to the class to see examples of its

‘use.

5.1.5 Prompters

A prompter is a "fill in the blank" menu. That is, a prompter is a menu in which you must type
your choice. It consists of two parts: the top part is a statement or question, and the bottom
part is a workspace in which you type.

There are several places in the system in which a/prompter appears. In a system browser, a
prompter appears when you

- add a class category

add message protocol to a class
- move a message from one protocol to another
- rename a class category

rename a class

+

- rename a message protocol

40 Smalitalk-80 Virtual Image Version 2

A prompter appears in the change management browser when you name files for reading t?r
writing changes files, and when you name a snapshot file. In the Form Editor, a prompter is
used for file naming, and for setting the size of the graphical grids. Dictionary inspectors use a
prompter to request the name of a key for a new entry.

Prompters are instances of class FilllnTheBlank. You can see examples of the use of prompters by browsing all

references to the class.

Part 5: Summary of System Interface Components

5.1.6 Cursors

name

normal

execute

origin

corner

read
write
crossHair
down

- up

marker

wait

thumbs up

thumbs down

5.1.7 Text Editing

image
N

L
,.._

—

£

Y

A

use
The cursor looks like this most of the time.

The point of cursor selection is at the upper left
comer, at the tip of the arrowhead.

Wait. The system is executing some expression.
During this time, you cannot do anything else.

Indicates that you should designate the top left
corner of a rectangular area by moving the
cursor to where you want, and then pressing,
but not releasing, the red button,

Indicates that you should designate the bottom
right corner of a rectangular area by keeping
the red button depressed while you move the
cursor to where you want the corner to be, then
releasing the button.

Wait. Information is being read from an
external file,

Wait. Information is being written on an
external file,

In the Bit Editor, indicates the location of the
bit at which editing will occur.

(previous information) In a scroll bar, indicates
scrolling the text to see the preceding text.

(next information) In a scroll bar, indicates
scrolling the text to see the Succeeding text.

(jump) In a scroll bar, indicates the
proportional location to which you want to
jump.

Wait. The system is carrying out some file
operaton that is time consuming,

Answer yes in the confirmer,

Answer no in the confirmer.

Text editing is carried out using a combination of commands issued by selecting an item from

TP T R B

42 Smalltalk-80 Virtual Image Version 2

the yellow button menu and commands issued by typing keys on the keyboard.

Text Selection

Text is selected using the pointing device and the red button. Move the cursor in a view of text,
either at one of the characters or between characters or at the end of the passage of text. Click
the red button. A caret (an inverted "v") appears at the cursor location or at the gap just before
the character. Pointing to a place in the text and clicking the red button creates a zero-width
selection. The method of clicking once between characters is the one to use if you want to

insert text

Move the cursor to one end of the passage of text and press the red button. Hold it down while
moving the cursor to the other end of the passage This activity is called draw through. When
the cursor reaches the other end of the passage, release the button. The selected text is
highlighted. The method of drawing through a passage of text is the one to use if you want to
replace, copy, delete, or change the font or emphasis (bold or italic face) of the text.

Clicking the button twice with the cursor in the same location selects different passages,
depending on the cursor location.

To select Double click

-within a word, or just before or just after the word if
the word is not just inside a delimitor

a whole word

a delimited text just after the left member of a pair of delimiters or
just before the right member (the delimiters
themselves are not selected); recognized delimiters
are parentheses, square brackets, angle brackets,
braces (“curly brackets™), single quotes, and double

quotes
all text in the view at the beginning or the end of everything in the view
a line of text ‘ (if the line is delimited by carriage returns) at the

beginning of a line (just after a carriage return), or at
the end of a line (just before a carriage return)

You can also select text that is not visible in the view by drawing through to the outside of the
view, causing automatic scrolling to the next text (if you move outside the bottom of the view)

or scrolling to the previous text (if you move outside the top of the view).

The “escape” key on the keyboard can be used to select text that was just typed. Press the
"escape” key when you have finished typing. The characters you typed since the last mouse

click will be highlighted.

Part 5: Summary of System Interface Components 43

Text Editing Yellow Button Menu

Whel'l 'you press the yellow button while the cursor is in a view of editable text, messages
pertaining t0 modifying that text appear on a meny (see Figure 5.1.3).

again Repeats the last replace, copy, or cut edit command.

undo If possible, reverses the effect of the last command.

copy Places a copy of the current text selection into a buffer.

cut Deletes the current text selection; saves it in a buffer.

paste . Text is remembered in a buffer when copied or cut. Replaces the

current text selection with the remembered text.
Messages may appear that pertain to evaluating the text.

do it Evaluates the text as a Smalltalk-80 expression. This involves first
compiling the expression to check for syntax errors.

rint i . .
print it ?ame as do it except a description of the result of evaluation is
Inserted into the text and becomes the current sclection.

Messages rnay.élso appear that pertain to storing the text or to retrieving a copy of the text
before any editing was done to it and after the last time the accept command was issued.

accept Stores the text. This command has a variety of meanings, depending
on the context in which the text was created. In a workspace, the text
is simply remembered so that if more editing is done and then cancel
is chosen, the stored text can be restored in the workspace. In a
browser, the text is compiled. If the compilation is successful, the
compiled method is stored.

cance! Restores the text in the view to the version at the last time an accept
was issued; if no accept was issued, then the text is restored to the
version when the text was first displayed in the view.

e
- P T

I
e
B K

Ut

|
[pazra
[door

1,

pring it ;\

AcCapr
;1! '-‘-‘F'-

0’0 ;

Figure 5.1.3. Text Editing Yellow Buttan Menn

——--ﬂ-_r .

44

Smalitalk-80 Virtual Image Version 2

Issuing Commands Using Keys and the "Control" Key

type keys
ctri O

ctri 1

ctrl 2

ctrl 3

ctrl 4

ctrl 5

ctrl 6

ctrl 7

ctrl 8

ctrl 9

ctri t

ctrl §

ctri w

"delete”
"backspace”
ctri -

ctri b

action

Change the font of the text selection. The system default is sans-serif
12-point font. Changing a text selection to bold, italic, or underline is
considered a change in font and is done by selecting the appropriate
font number. The numbers depend on the current style being used.

Change the font of the text selection. The system default is sans-serif
10-point font.

Change the font of the text selection. The system default is sans-serif
10-point font, bold.

Change the font of the text selection. The system default is sans-serif
10-point font, italic.

Change the font of the text selection. The system default is serif 12-
point font.

Change the font of the text selection. The system default is serif 12-
point font, bold.

Change the font of the text selection. The system default is serif 12-
point font, italic.

Change the font of the text selection. The system default is serif 10-
point font.

Change the font of the text selection. The system default is serif 10-
point font, bold.

Change the font of the text selection. The system default is serif 10-
point font, italic.

insert the text ifTrue:.

insert the text ifFalse:.

cut the text selection and the word preceding the caret (typically used
while typing and while there is no text selection simply to delete the
last word typed).

cut the current text selection.
cut the text sclection and the character before the selection.
Underline the sclected text.

Make the selected text boldfaced.

Part 5: Summary of System Interface Components

ctric This is the system interrupt and should not be typed while text editing
unless a process interrupt is desired.

ctrl shift - Remove any underline from the selected text.

ctrl shift b Make the selected text not boldfaced.

ctrl shift ¢ This is a special system interrupt, used when the system seems dead

and everything else fails.

Inserting and Deleting Delimiters About a Selection

If you type one of the following, it will either insert or remove the corresponding delimiter
about the selection. If the selection is currently between the corresponding
delimiters, then the delimiters will be deleted. Otherwise, they will be
inserted. |

type keys insert _delimiters
ctri [[and]
ctrl ((and)
ctrl < < and >
ctrl " " and "
ctrl’ " and ’

Smalltalk-80 Virtual Image Version 2

Part 5: Summary of System Interface Components

5.2—System Views

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.2.9
5.2.10
5.2.11
5.2.12
5.2.13
5.2.14

The system views

5.2.1

Bit Editor

System Class Browser
Change-Management Browser
Change-Set Browser
Debugger

File List

Form Editor

Inspector
Message-Set Browser
Notifier

Project

Syntax Error

Text Collector
Workspace

outlined in this section are presented in alphabetical order.

Bit Editor

47

There are two ways to access the Bit Editor, one that creates a standard system view in which a
Form is edited using the Bit Editor (this is a "scheduled” Bit Editor), and one that is not embedded
in a standard system view (this is an "unscheduled” Bit Editor).

name

general description

how accessed

Bit Editor (scheduled)

Used to create and modify a form by placing black or white dots in a
magnified view of the form. The cursor shape is the crossHair cursor.

To create a view with two subviews, a magnified one in which editing is one
and an unscaled version, evaluate one of the following expressions (where

extentPoint and originPoint are instances of class Point:

scaleFactor is a

Point; aForm1 and aForm2 are instances of class Form, both of which must

be the same size).
Form fromUser bitEdit

(Form new extent: extentPoint) bitEdit

(Form new extent: extentPoint) bitEditAt: originPoint

et = s »

resantany ww o vinwual Hidyge version <

J

=)
L

how created

how terminated

blue button activity

red button activity

Part 5: Summary of System Interface Components 49

Form fromUser bitEditAt: originPoint scale: scaleFactor
(OpaqueForm shape: aForm) bitEdit

(OpaqueForm figure: aForm1 shape: aForm2) bitEdit

Try as an example OpaqueForm makeStar bitEdit.

Designate the top left corner of the rectangular area. The extent of the area is
fixed by the size of the Form. In the case of the first expression, you
designate the Form’s rectangular area first.

Blue button choose close.
Défault

In subview A, place a color dot at the location of the cursor. Any change to
the image is reflected in the view in subview C. Choose a color from the menu

in subview B.

yellow button activity

subview A

keyboard activity

name

general description

how accessed

how created

how terminated

accept Save the current displayed image as the form.
cancel Restore the saved form as the current displayed image.

Each "color" menu item corresponds to a key on the keyboard. Pressing the
key is identical to selecting the menu item with the red button. n=black,
v=gray (when available), x=white.

Bit Editor (unscheduled)

Used to create and modify forms by placing black or white dots in a magnified
view of a form. The cursor shape is the crossHair cursor.

Evaluate an expression of the form

BitEditor magnifyOnScreen

Designate the Form’s rectangular area and then designate the top left corner of
the rectangular area for the magnified view. Extent of the area is fixed as a
scale of the size of the Form’'s area.

Click any button outside the editing area.

e T

Qttiallaun-ouv virudl image version <
Part 5: Summary of System Interface Componenis 51

blue button activity None

System Browsarl
| LIST MENU LIST MENU LIST MENU LIST MENU [: . B T :
N s ; red button activity Place a "color” dot at the location of the cursor. Choose a color from the
of class of class of message of rnessage , menu in subview B.
categories narnes categories setectors
(o] , yellow button activity
irstanca{F |oras: £
subview A
TEXT E accept Save the currently displayed image as the form.
cancel Restore the saved form as the current displayed image.
of message pattern and source code
keyboard activity ~ Each "color" menu item corresponds to a key on the keyboard. Pressing the
. key is identical to selecting the menu item with the red button. n=black,

v=gray (when available), x=white.

5.2.2 System Class Browser

The use of only the full system class browser is summarized here. The other browsers are subsets
of this full browser, where the "red button activities,” "yellow button menus,” and "how accessed” -
and "how terminated” are all the same for those subviews shared in common. These other browsers

System Browsarf

@ 3 ; are the System Category Browser, Class Browser, Message Category Browser, Message Browser, and
filg cur e our | fila out file gur , Class Hierarchy Browser. Typically, these browsers are accessed by choosing yellow button
print oyt arnt out Loprint Ut print sut) :
AN ; ipawn U spawn Ipawn ~ commands.
L3 Gg CATRYOryY Epasen mararchy ‘3 profaco 5 Zanders B 1
Fanama i Stersrchy] anama imptamantar: .
ramoYa i dannition 'oramave L maisages E |
REEET 1 e Ll ELE —mes name System Browser
2iit 3 "~ praracaos i Ay :
TUARIT war rers [agan : L. . .
| a1z earrafs rgf_*}_e_ ~ general description Used to access system class descriptions for the purpose of reading and editing
SR Lo ’ g ' methods, and to create new class definitions and categories of class definitions.
: i nazra ; 7 Typically all program development is done in a System Browser or in one of its
EOERT: h sub-browsers, such as a Class Browser.
Lrneir i
r how accessed System Menu choose browser.
s glan 8) Create a Class Browser by evaluating an expression of the form

Browser newOnClass: <className)>

how created Designate the rectangular area.
how terminated Blue button choose close.

blue button activity Default

red button activity The menu items in subview F, instance and class, select viewing one of two
aspects of a class: messages to instances, or messages to the class itself, 5

subview A

subview B

subview C

subview D

subview E

Smalltalk-80 Virtual Image Version 2

Choouse items in the list menus in subviews A, B, C, and D; and select
characters for text editing in subview E.

When there is a selection, the names of classes in the selected category display
in subview B.

When there is no selection, the class definition template displays in subview E.
The template is

NameOfSuperclass subclass: # NameQOfClass
instanceVariableNames: ’instVarName1l instVarName?2’
classVariableNames: 'ClassVarName1 ClassVarName2'
poolDictionaries: "
category: 'Category-Name'

Edit by replacing each argument--NameOfSuperclass, NameOfClass,
instVarName, ClassVarName, Category-Name--with an appropriate name.
Class names and class variable names must begin with a capital letter. The
message subclass: can be replaced with variableSubclass:,
variableByteSubclass:, or variableWordSubclass: if appropriate. These
alternative keywords indicate special class representations for classes whose
instances have indexable instance variables, classes whose instances have
indexable instance variables that are represented as bytes, and classes whose
instances have indexable instance variables that are represented as words,

When there is a selection, the names of the message protocols of the selected
class display in subview C, and the class definition of the selected class displays

in subview E.
See Part 3 for the use of multiple inheritance class definitions.

When there is a selection, the names of message protcols in the selected class
display in subview D.

When there is no selection in this subview, the method definition template
displays in subview E. The template is

message selector and argument names
"comment stating purpose of message"

| temporary variable names |
statements

Edit by substituting for all parts to create a well-formed Smalltalk-80 method.

When there is a selection in this subview, the method associated with the
selected message selector is displayed in subview E.

Text cditing.

Part 5: Summary of System Interface Components 53

yellow button activity

subview A (no item selected)

add category

update

edit all

subview A (item selected)

file out

print out

spawn

add category
rename

remove

update

edit all

subview B (no item selected)

subview B (item selected)

file out

print out

Adds a new item to the class category menu.

Informs this browser if new categories were created by
reading from an external file or by editing in another
browser.

Displays in subview E the system class organization as a
scquence of class category descriptions, each in the
format

(category’ className className)

Prints descriptions of each class in this category onto a
file whose name is the category name concatenated with

the extension ’.st’.
Prints a "pretty printed” description of each class in

this category onto a file whose name is the category
name concatenated with a system-specific extension.

Opens a System Category Browser in which only the
classes included in the selected category can be
accessed.

Adds a new item to the class category menu.

Changes the name of the currently selected category.
Removes this category of classes from the system.
Informs this browser if new categories were created by

reading from an external file or by editing in another
browser.

Displays in subview E the system class organization as a
sequence of class category descriptions, each in the
format

('category’ className className)

No menu displays. Subview flashes,

Prints the description of the selected class onto a file
whose name is the class name concatenated with the

extension ’.st’

Prints a "pretty printed” description of the selected
class onto a file whose name is the class name

Smalitalk-80 Virtual Image Version 2

spawn

spawn hierarchy

hierarchy

definition
comment

protocols

inst var refs

class var refs

class refs

rename

remove
subview C (no item selected)
add protocol

subview C (item selected)

file out

print out

concatenated with a system-specific extension.

Opens a Class Browser in which only the description of
the selected class can be accessed.

Opens a Class Hierarchy Browser in which only the
descriptions of the selected class, its superclasses, and its

subclasses, can be accessed.

Displays in subview E a description of the class
hierarchy of the sclected class. The description includes
the instance variables of each class.

Displays in subview E the message that creates the
selected class. ‘

Displays in subview E the comment describing the
purpose of the selected class. \

Displays in subview E the class message organization as
a sequence of message category descriptions, each in
the format

(‘category’ messageSelector messageSelector)

Displays a menu of the instance variables of instances
of the selected class. Choose one to open a Message-
Set Browser for all methods that refer to the selected

instance variable.

Displays a menu of the class variables of the selected
class. Choose one to open a Message-Set Browser for
all methods that refer to the selected class variable.

Opens a Message-Set Browser for all methods that refer
to the selected class.

Changes the name of the selected class and opens a
Message-Set Browser for all methods that refer to the

class.

Removes the selected class from the system.

Adds another message category to the protocol menu.

Prints the description of the selected class’s selected
protocol onto a file whose name is the class name
followed by a hypen followed by the protocol and

concatenated with the extension ’.st'.

Prints a “pretty printed" description of the selected
class’ selected protocol onto a file whose name is the
class name followed by a hypen followed by the
protocol and concatenated with a system-specific

subview D (no item selected)

Part 5: Summary of System Interface Components 55

spawn

add protacol

rename

remove

subview D (item selected)

subview E

file out

print out

spawn

senders
implementors

messages

move

remove

again
undo
copy
cut

paste

extension.

Opens a Message Category Browser on the selected
protocol in which only the description of the selected

protocol of messages can be accessed.
Adds another message category to the protocol menu.

Changes the name of the currently selected protocol.

Removes the selected protocol from the class,

No menu displays. Subview flashes.

Prints the description of the selected message onto a file
whose name is the class name followed by a hypen
followed by the selector and concatenated with the

extension ’.st’.

Prints a "pretty printed" description of the selected
message onto a file whose name is the class name
followed by a hypen followed by the selector and
concatenated with a system-specific extension.

Opens a Message Browser in which only the description
of the selected message for the selected class can be

accessed.

Opens a Message-Set Browser to access all the methods
in which the selected message is sent.

Opens a Méssage-Set Browser to access all the methods
that implement the selected message.

Creates a menu of all the messages sent in the method
associated with the selected message. Choose one to
open a Message-Set Browser to access all the methods
that implement the selected message.

Moves the selected message to another protocol.

Removes the selected message from the selected class,

as in text editing.
in text editing.

8

as in text editing.
as in text editing.

as in text editing.

doit as in evaluating expressions.

Smalitalk-80 Virtual Image Version 2

Part 5: Summary of System Interface Components 57
print it as in evaluating expressions.
accept If the text is from hierarchy, do nothing.
If the text is from edit all or protocols, store the new
categorization.

If the text is a definition or comment, evaluate the text
as a message. This evaluation might alter the definition
or the class comment. Generally the text is evaluated
as a message and might fail if variables are undeclared.

In the previous cases we assumed that no message
protocol was selected. If a protocol is selected, then the l

text is a method that is compiled and stored in the
method dictionary of the selected class under the
selected protocol. If this message is already stored
under a different protocol, it is removed from that
protocol and stored under the currently selected one.

cancel Redisplays the text that appeared before any editing
‘ that occurred after the last accept.
format For methods only, redisplays the text, pretty-printed.

Does not do an automatic accept since you might not
like the formatted version. Does not work if the text

has been edited since the last accept.

spawn Creates a Message Browser for the selected message in
which the method is the edited (but not yet saved)
version currently displayed. Does an automatic cancel
in subview E.

explain Inserts an explanation of the single syntactic element
that is the current text selection.

subview dependencies
S Tatagors | ielectar ame b Text is displayed in subview E as the result of selections in A, B, or D. If
— e - there is no selection in C, E is the class template for the selection in subview B.
: : The menus displayed in B, C, and D are chosen with respect to the selections
in A, B, and C respectively. The selection in F, combined with the selection in
B, determines categories in C.

show file Row caragory

accessible views Class Category Browser, Class Browser, Message Category Browser, Message
Browser, Mesage-Set Browser, Class Hierarchy Browser

5.2.3 Change-Management Browser

name Change-Management Browser

general description Used to access the changes for crash recovery or combining group work.
how accessed Evaluate one of the following expressions

Changel.istView open

Changel.istView recover

Smalltalk-80 Virtual Image Version 2

Part 5: Summary of System Interface Components 59
Changel.istView
openOn:
(Changelist new recoverFile:
T (FileStream oldFileNamed ’filename’))
file out
racovaer last changas .
display syrtem changes how created Designate the rectangular area.
30 all
::?13:9 &:: R SATRYOry)
fila 5;;.,,: ;,, tategory | saisetor ' how terminated Blue button choose close
Iraer
i N 4
ramava it blue button activity Default
rastore it
jpawn it Agan
chack conthices UNdo i s
T s S ST red button activity Choose menu items in subview A; choose filters; and select characters in
‘ ut subview B.
asta
I NEA
. bt ‘: subview A When there is a selection, the method or expression associated with the
Cmg,‘ selection displays in subview B. The choice of items in subview A depends on
the selection of filters.

yelléw button activity

subview A
file in Adds references to a specified changes file to the list
menu.
file out Prints all the unmarked items in the list menu onto a
new changes file.
recover last changes Adds to the list menu, references to the methods in the
internal change set.
display system changes
Adds to the list menu, references to the methods in the
internal change set.
do all Evaluates each expression or new definition that is
referenced in the list menu and is not marked for
removal.
remove all Marks every item in the list menu for removal
S T Sl ' restore all Unmarks every item in the list menu that is currently
' e ' ' marked for removal
spawn all Creates another change-management browser whose list
menu is identical to the currently displayed one.
forget Deletes every item in the list menu that is marked for
removal.
- do it Evalautes the selected item, regardless of whether it is

marked for removal.

remove it Marks the selected item.

Smalitalk-80 Virtual Image Version 2

Part 5: Summary of System Interface Components 61
restore it Unmarks the selected item.
{Changed tassages spawn it Opens a Message Browser for the current system
definition of the selected item.
LIST MENU of class/message names :
check conflicts Print any conflicts among the items in the menu onto a
file.
TEXT
check with system Print any conflicts among the items in the menu and
, system definitions onto a file.
of message pattern and source code
subview B
again as in text editing.
undo as in text editing.
copy as in text editing.
Changed Messa: cut as in text editing.
Fla out again paste as in text editing.
print aur 'j“‘jf’ do it as in evaluating expressions.
3pan sopy
;enders sut print it as in evaluating expressions.
implamantors: 3aste .
nﬁ:gss agas pdo it _ accept Saves the edited text as the actual text.
move rint it P ' cancel Redisplays the text that appeared before any editing
ramoya a-:cep‘r. that occurred after the last accept.
cance -
formart E)
l B ' spawn ; accessible views Message Browser
arplain i) |
5.2.4 Change-Set Browser
name Change-Set Browser

general description Used to access the changes stored in the internal change set.

how accessed Evaluate the following expression
Smalltalk browseChangedMessages

If no changed messages exist, then the characters Nobody appear in the
(visible) System Transcript.

how created Designate the rectangular area.
how terminated Blue button choose close.

blue button activity Default

62

Smalltalk-80 Virtual Image Version 2

red button activity Choose menu items in subview A; select characters in subview B.

subview A When there is a selection, the method associated with the selection displays in

subview B.

" yellow button activity

subview A (no item selected)

subview A (item selected)

subview B

file out

print out

spawn

senders

implementors

messages

move

remove

again
undo
copy
cut
paste
do it
print it
accept

No menu displays. Subview flashes.

Prints the description of the selected message onto a file
whose name is the class name followed by a hypen
followed by the message selector and concatenated with

the extension ’.st.

Prints a "pretty printed” description of the selected
message onto a file whose name is the class name
followed by a hypen followed by the message selector
and concatenated with a system-specific extension.

Opens a Message Browser in which only the description
of the selected message can be accessed.

Opens a Message-Set Browser to access all the methods
in which the selected message is sent.

Opens a Message-Set Browser to access all the methods
that implement the selected message.

Creates a menu of all the messages sent in the method
associated with the selected message. Choose one to
open a Message-Set Browser to access all the methods
that implement the selected message.

Moves the selected message to another protocol.

Removes the selected message from its class.

in text editing.
in text editing.
in text editing.
in text editing
in text editing.
in evaluating expressions.
in evaluating expressions.

The text is a method that is compiled and stored in the
method dictionary of the selected class under the
selected protocol.

B2 8 8B 8B 8B B

accessible views

5.2.5

name

general description

how accessed

how created

how terminated

Part 5: Summary of System Interface Components 63

cancel Redisplays the text that appeared before any editing
that occurred after the last accept.
format Redisplays the text, pretty-printed. Does not do an

automatic accept since you might not like the
formatted version. Does not work if the text has been
edited since the last accept.

spawn Creates a Message Browser for the selected message in
which the method is the edited (but not yet saved)
version currently displayed. Does an automatic cancel
in subview B.

explain Inserts an explanation of the single syntactic element
that is the current text selection.

“Message-Set Browser, Message Browser

Debugger

Debugger

Used to explore the context of an error halt or breakpoint. Provides access to
the scquence of message sends that terminated with access to this debugger.

The message-send sequence is displayed in a list menu in subview A in the
form of

classN.ame»messagé
or, if the message is found in a class other than className,

className (name of class whose method dictionary contained the
message)>>message

The method associated with the message selected in subview A is displayed for
editing in subview B. The instance variable names of the message receiver are
shown in a list menu in subview C; the value of the selected variable is
displayed in subview D (just as in an Inspector). The temporary variable
names of the method shown in subview B are displayed in a list menu in
subview E; the value of the selected variable is displayed in subview F (just as
in an Inspector).

Notifier yellow button choose debug
Designate the rectangular area.

Blue button choose close.

blue button activity Default

red button activity Select items (methods) in the list menus in subviews A, C, and E; and select

characters for text editing in subviews B, D, and F.

Smalltalk-80 Virtual Image Version 2
Part 5: Summary of System Interface Components 65

yellow button activity

Usrar'intermpt!
LIST MENU : subview A (no item selected)
* cla essa : . :
it 1 ,, , fullStack Opens the menu to the full stack of message-sends of
the interrupted message-sending activity.
TEXT . proceed Closes the debugger and continues execution in the
of message pattern and source code k;; : currently selected method. Proceed in the method of
the last message-send in the sequence. The
continuation assumes that the message at the point of
the interruption had completed and determined a value.
The value for proceeding is nil or the value of the last
expression evaluated in subview B.
: subview A (item selected)
£ |
‘ i : senders Opens a Message-Set Browser to access all the methods
e — — LIST MENU TEXT in which the selected message is sent.
impiementors Opens a Message-Set Browser to access all the methods
- @ @ that implement the seclected message.
messages Creates a menu of all the messages sent in the method
associated with the selected message. Choose one to
open a Message-Set Browser to access all the methods
full stack that implement it
procead . ! . . o
rastart : , step Continue evaluation to the next message-send in the
, 3“?“"9": : :) currently selected method. If no method is specifically
rmelamantars : selected, assume the selection is the last message-send.
f——’“ii—;égﬂ— [233 ; Halts immediately after evaluating the next message-
; and '-—':J—%l?—- i send.
©ocur :
Sl send If step were selected, evaluation would consist of a
s . s sequence of message-sends. Send evaluates only the
[aam) oo Tgam next one of these and halts immediately after.
a0 SR R undo =
[" TR Farmar Topw 5 : fullStack Opens the menu to the full stack of message-sends of
s o the interrupted message-sending activity.
2iTe - | Laita i
HE T A 4 01t : 4 .
“pri;-_ e rine ir . restart Closes the debugger and restarts execution from the
peeens BT PN ' beginning of the currently selected method.
S 55 I R T] ‘ B PR DR V
: : proceed Closes the debugger and continues execution in the
@ ? currently selected method. The continuation assumes
that the message at the point of the interruption had

completed and determined a value. The value for
proceeding is nil or the value of the last expression
evaluated in subview B. Each time a new message-send
is selected in subview A, the proceed value is reset to
nil.

subview B

again as in text editing.
undo as in text editing.

Smalltalk-80 Virtual Image Version 2

copy
cut
paste

do it

print it
accept
cancel

format

spawn

explain

subview C (no item selected)

subview C (item selected)

inspect

subview E (no item selected)

subview E (item seiected)

inspect

subview D and F

again
undo
copy
cut

paste
do it

as in text editing.
as in text editing.
as in text editing.

as in evaluating expressions. Evaluation is carried out
in the context of the interrupted activities at the state of
the message-send selected in subview A.

The value of the selected expression becomes the
proceed value of the debugger.

as in evaluating expressions.

The text is a method that is compiled and stored in the
method dictionary of the selected class under the
selected category.

Redisplays the text that appeared before any editing
that occurred after the last accept.

Redisplays the text, pretty-printed. Does not do an
automatic accept since you might not like the
formatted version.

Creates a Message Browser for the selected message in
which the method is the edited (but not yet saved)
version currently displayed. Does an automatic cancel
in the subview.

Inserts an explanation of syntactic elements in the

current text selection.

No menu displays. Subview flashes.

Opens an Inspector for the object referred to by the
selected variable name. The variable self refers to the

receiver of the message currently selected in subview A.

‘No menu displays. Subview flashes.

Opens an Inspector for the object referred to by the
selected variable name.

in text editing.
in text editing.
in text editing.
in text editing.

8 8 B &

as in text editing.
as in cvaluating expressions. Evaluation is carried out

Part 5: Summary of System Interface Components 67

in the context of the variables of the message-send
selected in subview A.

print it as in evaluating expressions. Evaluation is cdrried out
in the context of the variables of the message-send
selected in subview A.

accept Saves the edited text as the actual text. In addition,
saves the value of the text as the value of the currently
selected variable, if any. Evaluation is carried out in
the context of the variables of the message-send
selected in subview A.

cancel Redisplays the text that appeared before any editing
was done after the last accept.

subview dependencies Text is displayed in subviews B, C, and E as the result of selection in A.
The value in subview D is the value of the variable selected in subview C; the
value in subview F is the value of the variable selected in subview E.

accessible views Inspector, Message Browser, Message-Set Browser

i [User intarrupr}

Smalltalk-80 Virtual Image Version 2

Part 5: Summary of System Interface Components 69
5.2.6 File List
name File List

TEXT
f fi . s . . .
of file names and patterns general description Used to access contents of files on a file directory. User specifies which files

should be referenced in a menu by naming files and/or naming patterns that

LIST MENU C
of file names match file names.
how accessed 1. System Menu choose file list.
TEXT
2. Evaluate the expression
FileList open
how created Designate the rectangular area.
how terminated Blue button choose close.

blue button activity Default

red button activity Choose items (file names) in the menu in subview B and select characters for
text editing in subviews A and C

yellow button activity

T subview A
Fila Lisrl again as in text editing.
: undo as in text editing.
('ffg’ copy as in text editing.
. . .\
apcacsg.ef AT content: cut as Tn text edft%ng.
F‘imﬂl‘ file in paste as in text editing.
SR AL accept Saves the contents and then determines the alphabetic
Aot list of file names for subview B that match the
Toom IR contents; parsing assumes different names or patterns
' J?_, 4o are separated by carriage returns.
copy cancel Redisplays the text that appeared before any editing
cut that occurred after the last accept.
paste .
40 0t subview B (no item selected)
print it . .
fila it ir No menu displays. Subview flashes.
put . .
qar subview B (item selected)
e e get contents Retrieve the contents of the selected file, and display
the contents in the text subview.

Smalitalk-80 Virtual Image Version 2 | Part §: Summary of System Interface Components 71

file in Retrieve the entire contents of the selected file, reading
evaluating the text according to the file format for class

descriptions and expressions,

copy name Copy the text of the file name into the text editor
buffer so that it can be "pasted” into other text views.
rename Change the name of the selected file. A prompter

appears, with the name of the selected file. Edit it with
the new file name. Type the “carriage return" key or
choose the yellow button command accept to indicate
that you have completed the file name. The menu of
file names will be updated. If you type an improper
file name, or no file name at all, a confirmer will
appear to determine whether you want to try again to
specify a file name.

remove Delete the selected file from the file directory. A
A confirmer appears to determine whether you really want

o remove the selected file. Choose yes if you do, no

if you do not '

subview C
again as in text editing,
undo as in text editing,
copy as in text editing.
cut as in text editing.
paste as in text editing.
SEER T do it as in evaluating expressions.
’ print it as in evaluating expressions.
painting area file it in Reads and evaluates the text selection.
put Stores the text from the view onto the file,
get Restores the text to the view from the file.

—_— : subview dependencies
4. Text is displayed in subview C as a result of selection in subview B. The list

displayed in B is the result of choosing accept in subview A.

* = accessible views Syntax Error View

5.2.7 Form Editor

The Form Editor is used to make pictures.

painting area
accapt

Zancel : | name Form Editor

general description Used to create and modify Forms.

72

Smalitalk-80 Virtual Image Version 2

C

J

LIST MENU
aof instance
variable narnes

TEXT
that is the value
of the selected variable

Again
undo
capy
T
pasta
EERES
orint it
ACCRpPT
cancal

how accessed

how created

how terminated

blue button activity

red button activity

Part 5: Summary of System Interface Components 73

1. - Evaluate one of the following forms of expression
Form fromUser edit

(Form new extent: extentPoint) edit

(Form new extent: extentPoint) editAt: originPoint

2. To be able to use the whole screen for editing,

_FormEditor openFuliScreenForm

Designate the top left corner of the rectangular area. The extent of the area is
fixed by the Form and Form menu sizes. In the case of the first expression in
1, you designate the Form’s rectangular area first.

Blue button choose close.
Default, although the frame size cannot be changed.

Brush forms onto the “canvas” of subview A according to the painting tools.
Select menu items in subview B to select the painting tools, modes, and
haiftones.

yellow button activity

subview A

keyboard activity

accessible views

5.2.8

name

general description

accept Save the current image as the Form.
cancel Restore the saved Form as the current image.

Each menu item corresponds to a key on the keyboard. Pressing the key is
identical to selecting the menu item with the red button.

Bit Editor (unscheduled)
Inspector

Inspector

Used to examine the variables of an object.

Smalltalk-80 Virtual Image Version 2

Part 5: Summary of System Interface Components 75
how accessed 1. Debugger subviews C and E choose inspect
LIST MENU 2. Inspector subview A choose inspect.
. of class/message names ' : 3. Send any object the message inspect, for example, evaluate the expression
TEXT ' #(2 4 6 8) inspect.
of message pattern and source code
how created Designate the rectangular area.
how terminated Blue button choose close. gL

blue button activity Default

Sandars ro pén red button activity Choose items in the list menu of subview A: select characters for text editing

inl subview B.

file out .igadm
] ’ ymdo . ‘
s e is T yellow button activity |
Ipawn - th_,
" - -1y
imp.l‘oga:-:?;\r:or: pasta subview A inspect Opens an Inspector for the object referred to by the
messanas EERE selected variable name.
' rint ir
move - H
ramova 2ecept subview B
Cancal
T again as in text editing. 1
spawn : undo as in text editing. ;
axplain . ‘ . . ‘;
, £ copy as in text editing, ' |
cut as in text editing. ' 1]
e e paste as in text editing.
Sandars oF opan: do it as in evaluating expressions. j
print it as in evaluating expressions. ‘
accept Evaluate the text as a Smalltalk-80 expression. Replace

the text by the resulting value. Store the value as the
value of the currently selected variable, if any. If the
text can not be successfully evaluated in the context of
the variables of the object under inspection, an error is
created. If no variable is selected in subview A and
this command is chosen, subview B flashes.

cancel Redisplay the text that appeared before any editing was

: '\ done after the last accept.

subview dependencies
Text is displayed in subview B as the result of selections in A.

accessible views Inspector

5.2.9 Message-Set Browser

Message-Set Browsers appear in several places in the system, primarily to give access to senders and

76 Smalitalk-80 Virtual Image Version 2 Part 5: Summary of System Interface Components 77

yellow button activity
Subview A and B in a Message-Set Browser correspond to subview D and E in

a System Browser.

implementors of messages.

name Message-Set Browser , i
subview A (no item selected)

gencral description Used to access a set of messages. The set is derived according to some retrieval No menu displays. Subview flashes.

criterion, such as: all messages whose associated method includes an expression
whose message selector is identical to a particular selector. The "particular
selector” referred to in the query is shown as the label of the browser.

subview A (item selected)

file out Prints the description of the selected message onto a file
whose name is the class name followed by a hypen
how accessed 1. System Browser, System Category Browser, Class Browser, Mcssage followed by the selector and concatenated with the
Category Browser, and Message Browser subview D yellow button choose extension ’.st’.
senders, implementors, or messages.
_ print out Prints a “pretty printed” description of the selected
2. Message-Set Browser subview A yellow button choose senders, message onto a file whose name is the class name
implementors, or messages. followed by a hypen followed by the selector and
concatenated with a system-specific extension.
3. Change-Set Browser subview A yellow button choose senders, :
implementors, or messages. spawn Opens a Message Browser in which only the description
. . of the selected message for the selected class can be
4. Debugger subview A yellow button choose senders, implementors, or accessed.
messages.
senders Opens a Message-Set Browser to access all the methods

5. Specific collections can be browsed by evaluating the following forms of
expressions. Expressions such as these appear in the System Workspace.

Smalltalk browseAllCallsOn: # keywordSymbol.
Smalltalk

implementors

in which the selected message is sent.

Opens a Message-Set Browser to access all the methods
that implement the selected message.

Creates a list menu of all the messages sent in the

browseAllCallsOn: # firstK dSymbol Utzes e L ; .
and?sztsecoufdl(eyworgséyrgg‘gf rdSymbo method associated with the selected message. Choose
one to open a Message-Set Browser to access all the
Smalltaik browseAllAccessesTo: variableName. methods that implement it
{Class name> browseAllAccessesTo: variableName. move Moves the selected message to another protocol.
Smalltalk remove Removes the selected message from the message set
browseAllCallsOn: and from its class. Confirmation will be requested.
(Smalitalk associationAt: # aSymbol).
Smalltalk browseAllimplementorsOf: # messageSelector. subview B
Smalltalk browseAllSelect: aBlock. again as in text editing.
undo as in text editing.
how created Designate the recfangular area. copy as in text editing.
cut as in text editing.
how terminated Blue button choose close. paste as in text editing.
do it as in evaluating expressions.
blue button activity Default print it as in evaluating expressions.
accept Typically, the text is a revision of an existing method

red button activity

Choose items in the list menus in subview A, and select characters for text
cditing in subview B. New messages defined in subview B will be categorized
in the class and category of the current selection in subview A. If there is no
such selection, then the code is simply ignored.

that is compiled and stored back. Or the text is a new
message and its associated method which will be stored
in the class and category of the message selector

selected in subview A.

Smalltalk-80 Virtual Image Version 2

Halt ancountarad,

non~-editable text

Hair ancountarad,

procaad
‘debuq

User Intarrupt l

non-editable text

—y

-

Part 5: Summary of System Interface Camponents 79
cancel Redisplays the text that appeared before any editing
after the last accept.
format Redisplays the text, pretty-printed. Does not do an
automatic accept.
spawn Creates a Message Browser for the selected message in

which the method is the edited (but not yet saved)
version currently displayed. Does an automatic cancel
in subview B of this Message-Set Browser as well as the
new Message Browser.

explain Inserts an explanation of syntactic elements in the
current text selection.

subview dependencies ,
Text is displayed in subview B as the result of a selection in A.

accessible views Message Browser, other Message-Set Browsers

5.2.10 Notifier
Notification that a runtime error or user-inserted breakpoint has occurred appears in a notifier.
name Notifier

general description Used to inform the user that an interruption in activities has occurred. Text
displayed indicates the last several message-sends before the interruption. You
decide whether to continue or discontinue the activities. The decision can be
deferred untd you inspect the current state of the activities by opening a
Debugger.

how accessed 1. Evaluation interruption occurs due to an error that is typically the result of
sending a message to an object that does not understand the message. The
label of the view indicates which message was not understood: the first line of
the text indicates the class of the unsuccessful receiver.

2. Anticipated interruption occurs because the code includes an expression of
the form

self error: 'errorMessageString’

The label of the view is the errorMessageString.

3. Anticipated interruption occurs because, as part of debugging activities, you
insert a breakpoint--code of the form

self halt
or
self halt: haltMessageString

The label of the view is either Halt encountered. or the haltMessageString.

Smalltalk-80 Virtual image Version 2

again

INTaYan]

copy
Surt
paste
accapt
cancei
snrar

Swntax Errorfis

TEXT
of message pattern and sgurce code

including syntax error rmessage

how created

how terminated

Part 5. Summary of System Interface Components 81

4. You interrupt activities by pressing the "control” key and the "¢” key on the
keyboard at the same time. The label of the view is User Interrupt.

Size and placement determined by the method that uses it. Typically appears
centered in the currently active view.

To ignore message but not continue the interrupted activity, blue button choose
close.

To ignore message and to continue the interrupted activity, vellow button
choose proceed.

To investigate the message using a Debugger, vellow button choose debug.

blue button activity Default

red button activity

None

yellow button activity

accessible views

5.2.11

name

general description

proceed The action interrupted by the appearance of this
message is continued. Note, this might be
inappropriate if an error occurred because an object is
in an improper state.

debug Opens a Debugger on the context of the interrupted
action.
correct When a Notifier occurs as a result of a runtime error

that a message was not understood, this command is
included in the menu so that you can ask the system to
try to guess an appropriate message-selector
substitution.

Debugger
Project
Project

An individual screen can contain several views of information: for example,
browsers, workspaces, transcripts, inspectors, debuggers, and projects. The
system can have several individual screens. These are called projects. Each
project maintains its own set of scheduled views and its own record of changes
that you make to the class definitions.

The project view serves as an entry to a project. It appears as a rectangular
area in which text can be prepared, just as in a workspace. This text describes
the project for documentation purposes. "Entering” the project puts your work
in the context of this project’s set of scheduled views and changes.

82 Smalltalk-80 Virtual Image Version 2

how accessed System Menu choose project.

Projects form a hierarchy for accessing purposes. Each project can contain
views through which sub-projects can be accessed. One project was created
when the system was initialized. It is maintained as the "top” of the project

hierarchy.
how created Designate the rectangular area.
how terminated Remove a project using blue button choose close. This will produce a

confirmer if any views or changes still exist in the project, or if the project
description has not been saved.

To leave a project, choose System Menu command exit project.

blue button activity Default

red button activity Select characters for text editing.

yellow button activity

again as in text editing.

undo as in text editing.

copy as in text editing.

cut as in text editing.

paste as in text editing.

accept Stores the edited text as the actual text.

cancel Redisplays the text that appeared before any editing
was done after the last accept.

enter Leaves the current project and enters the context of the
project referred to by this view. Refreshes the screen
with the new project’s views.

5212 Syntax Error

Syntax errors in files result in a ‘special error notification called a Syntax Error View.

name Syntax Error

general description Used to present a syntax error encountered when reading a method or
expression from a file. The error can be corrected, the method compiled and
saved or the expression evaluated, and then reading the file resumed.
how accessed 1. File List view yellow button choose file in.

2. Evaluate an expression of the form

—

Part 5: Summary of System Interface Components 83

(FileStream file: 'fileName’) fileln.

when, in each case, an error occurs.

how created Designate the rectangular area.

how terminated Blue button choose close.

blue button activity Default

red button activity Select characters for text editing in subview A.

yellow button activity

subview B .
again
undo
copy
cut
paste
do it
print it
accept

cancel

text editing.
text editing.
text editing.
text editing.
text editing,
evaluating expressions.
evaluating expressions.

The text is a method; compile it and store it in the
gﬁ»propnate class. Automatically proceed to read the
e.

Redisplays the text that appeared before any editing
after the last accept.

B BB & BB B
B BB B EEB

proceed Continues to read the selected contents of the file.

Syntax Error]

again

undo
capy

cut
LAZTE
B
print ir
ACCTepT
cancal
procaas

Smalltalk-80 Virtual Image Version 2

tem Transcript

TEXT

AASCHRT E

321N
[FiaTsfad
Sap
St
pasty
3T
prine .t
AcCapn

cancal

—-—

5.2.13

Part 5: Summary of System Interface Components 85

Text Collector

The primary Text Collector in the system is the System Transcript.

name

general description

how accessed

how created
how terminated
blue button activity

red button activity

Text Collector (Transcript)

Like a workspace, except it is also possible to send messages that store
characters in the view’s text. The message protocol is similar to that for storing
characters in any WriteStream. :

1. System Menu choose system transcript.

‘One special text collector is maintained and labeled the "System Transcript.” It

is referred to by the global variable Transcript. Choosing system transcript
creates a(nother) view of this particular text collector.

2. In order to create and schedule a new text collectdr, evaluate the expression
TextCollectorView

open: TextCollector new
label: 'TextCollector’

Designate the rectangular area.
Blue button choose close.

Default

Select characters for text editing. Note that changes due to text editing are not
reflected in multiple views of the System Transcript, although changes due to
message-sending are.

yellow button activity

again as in text editing.

undo as in text editing.

copy as in text editing.

cut as in text editing.

paste as in text editing.

do it as in evaluating expressions.

print it as in evaluating expressions.

accept Store the edited text as the actual text.

cancel Redisplay the text that appeared before any editing was

done after the last accept.

B T —— v

Smalitalk-80 Virtual Image Version 2

wiark s Baca

again
4ndo
SRy
Sur
DAt
4o it
prine it
ACCEQT
arns gl

T TWww

T T TR T T T

R e

message-sending

'5.2.14

Part 5: Summary of System Interface Components 87

Store the character.
Store each character in the string.

nextPut: aCharacter

nextPutAll: aString

print: aString Same as nextPutAll: aString.

show: aString Store each character in the string and
redisplay the view.

store: anObject Store a description of the argument,
anObiject, in a form that, when executed,

reconstructs the object.

space Store the character representing a space.

cr Store the character representing
positioning to the beginning of the next
line of text

crtab Store the character representing

positioning to the beginning of the next
line of text followed by a tab.

tab Store the character representing a tab.

crtab: aninteger Store the character representing
positioning to the beginning of the next
line of text followed by aninteger
number of tabs.

clear Remove all characters and display the
empty view.

Workspace

Access to simple text editing is provided in a Workspace. To explore ways to access the text

editor, examine sy

stem classes DisplayTextView, StringHolderView, and TextView, as well as

class ParagraphEditor.

name

general description

how accessed

how created

Workspace

Used as "paper” on which to prepare text An original version and edited
(working) version are maintained. If you attempt to close the view when the
text has not been stored (yellow button choose accept) then a confirmation is

required.
System Menu choose workspace.

One special workspace is maintained and labeled the "System Workspace.” It

is a class variable of class StringHolder. Copies of the system workspace can
be opened by choosing System Menu system workspace.

Designate the rectangular area.

—

a8 Smalitalk-80 Virtual Image Version 2

how terminated Blue button choose close.
blue button activity Default
red hutton activity Select characters for text editing

yellow button activity

again as in text editing.

undo as in text editing.

copy as in text editing.

cut as in text editing.

paste as in text editing.

doit as in evaluating expressions.

print it as in evaluating expressions.

accept Saves the edited text as the actual text.

cancel Redisplays the text that appeared before any editing

was done after the last accept.

