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Clonefiles are a relatively new addition to various flavors of Unix (and Windows). They were 
added to macOS with APFS in macOS Sierra (10.12.4).  Linux has reflinks, supported by XFS, 
BtrFS and OCFS2. Windows has had something similar in ReFS since 2016. In macOS they are 
created with the clonefile(2) system call; in Linux, you use ioctl_ficlone(2) (or 
ioctl_fideduperange(2)). At user level, there is cp -c (macOS) and cp --reflink (Linux).


What is a clonefile? 
A clonefile (I’ll use the macOS term) is created by cloning an existing file, and shares the 
original’s data, and so needs no additional space for data (but of course needs space for 
metadata). Creating a clonefile is near-instantaneous, no matter the size of the file being 
cloned. Unlike a hard link, blocks in a clonefile are unshared when written to; copy on write. In 
the extreme case, after extensive modification a clonefile has no data shared with the file it was 
cloned from. I’ve described this as if the clone was somehow distinguished, but in fact the 
situation is completely symmetric; you can think of each file as being a clone of the other. You 
can, of course, clone a clone.

I’ve been working with clonefiles recently, as part of my work on persistence. They provide a 
mechanism by which a file can be quickly snapshotted to record its current state, something 
very useful for heap checkpoints. However, if you’re in the habit of working with large clonefiles 
(which I am) there’s a problem: none of the other Unix tools are aware of them. This isn’t a 
correctness issue: any tool which works on a plain file will work on a clonefile. However, there 
are no tools to observe the sharing relationships between files (useful when debugging), and 
none of the standard tools are optimized for clonefiles.  Case in point: if you compare two 
clones using cmp(1), the shared blocks could obviously be omitted from the comparison, as 
they are by definition identical in the two files. But cmp reads and compares the data anyhow. 
For clones of, say, 100GB, cmp can run for many minutes, needlessly comparing each data 
block with itself.  Note that cmp is optimized to detect hard links and skip the comparison, but 
hard links have been in Unix since the early days. In the rest of this post I will describe a tool 
I’ve written that can elucidate sharing relationships, and is also the basis for a clonefile-
optimized cmp.


Detecting shared blocks 
The first problem we need to address is how to tell when two files are sharing a block. Neither 
macOS nor Linux provides an interface which can answer this directly, but there is an indirect 
way: we can get the underlying physical address of each of the two blocks, and if they live in 
the same filesystem and have the same physical address they are the same block. I learned 
this technique from this post and the associated repo, which is about how to do this in macOS. 
However, I will switch to discussing Linux next, as the Linux interface has a useful abstraction, 
and will return to macOS later.


Extents 
An extent is a contiguous region of a file which occupies contiguous physical storage. Once we 
know the logical offset (offset) and physical address of the start of the extent (physaddr(start)) 
we can easily calculate the physical address of any logical offset within the extent. 


	 physaddr(offset) — physaddr(start) = offset — start 

https://www.ctrl.blog/entry/file-cloning.html
https://www.manpagez.com/man/2/clonefile/
https://manpages.debian.org/testing/manpages-dev/ioctl_ficlone.2.en.html
https://man7.org/linux/man-pages/man2/ioctl_fideduperange.2.html
https://youtu.be/i06YA4dy8E4
https://ss64.com/osx/cmp.html
https://stackoverflow.com/questions/46417747/apple-file-system-apfs-check-if-file-is-a-clone-on-terminal-shell
https://github.com/dyorgio/apfs-clone-checker


The Linux FIEMAP interface returns the set of physical extents which underlie a logical region 
(start, length) of a file. This is a relatively new interface; it has no manual page, but there is a 
text file with most of the details; the rest are available in the associated header file.

To read the set of extents for a region of a file we can do something like this:

    struct fiemap fm= { (__u64)start, (__u64)len, 0L, 0L, 0 }; 
    if (ioctl(fd, FS_IOC_FIEMAP, &fm) < 0) 
        fail("Can't get # of extents : %s\n", strerror(errno)); 
    unsigned n= fm.fm_mapped_extents; 
    struct fiemap *pfm= malloc_s(sizeof(struct fiemap) 
                                 + n * sizeof(struct fiemap_extent)); 
    pfm->fm_start=      start; 
    pfm->fm_length=       len; 
    pfm->fm_flags=          0; 
    pfm->fm_extent_count=   n; 
    if (ioctl(fd, FS_IOC_FIEMAP, pfm) < 0) 
        fail("Can't get list of extents : %s\n", strerror(errno)); 
    if (pfm->fm_mapped_extents != n) 
        fail("file is changing: number of extents changed\n"); 

The code calls ioctl(FS_IOC_FIEMAP) twice: once to get the number of extents, and again 
to fill out the appropriately sized array of structs.  Obviously, the file should not be undergoing 
modification while this is done, as the number of extents could change between the two calls. 

Having done this, we can then make a printing utility to list the extents, e.g.: 

$ extents -P -f -p /mnt/big/a 
(1) /mnt/big/a 
#              Logical        Physical          Length   Flags 
                Offset          Offset                  
1                    0     25797865472          524288   
2               524288     25798914048          524288  LAST 

This shows a file of two extents, each half a megabyte in size.


Flags

In Linux, each extent comes with a set of flags, one of which tells us if the extent is shared (i.e., 
part of a clonefile): 

$ extents -P -f -p /mnt/big/b1 
(1) /mnt/big/b1 
#              Logical        Physical          Length   Flags 
                Offset          Offset                  
1                    0     25798389760          524288  SHARED 
2               524288     25800028160          524288  LAST 

However, it does not tell us with which other file(s) it is shared. For that, we need to compare 
the physical address (returned as another field of the struct) with the physical address of a 
candidate extent. For example, by comparing the last example with the following we can see 
that these files share the first extent:

$ extents -P -f -p /mnt/big/b 
(1) /mnt/big/b 
#              Logical        Physical          Length   Flags 
                Offset          Offset                  
1                    0     25798389760          524288  LAST SHARED 

https://www.kernel.org/doc/Documentation/filesystems/fiemap.txt
https://github.com/torvalds/linux/blob/master/include/uapi/linux/fiemap.h


We should be cautious when interpreting the information return by FIEMAP: it is internal to the 
implementation of the filesystem, and therefore dependent on a myriad of otherwise invisible 
details. For example, if we get the extent list for a newly created file, we might observe that the 
physical addresses have not yet been allocated because the file’s data are still in flight:

$ dd if=/dev/random count=100 of=/mnt/big/c; extents -P -f -p /mnt/big/c 
100+0 records in 
100+0 records out 
51200 bytes (51 kB, 50 KiB) copied, 0.00255701 s, 20.0 MB/s 
(1) /mnt/big/c 
#              Logical        Physical          Length   Flags 
                Offset          Offset                  
1                    0               0           51200  LAST UNKNOWN DELALLOC 
$ sync; extents -P -f -p /mnt/big/c 
(1) /mnt/big/c 
#              Logical        Physical          Length   Flags 
                Offset          Offset                  
1                    0        10899456           51200  LAST 

Holes

If we look at the sample output below we will see something strange: there is a gap between 
the two extents (i.e., the logical offset of the second is not the same as the logical offset of the 
end of the first).

$ extents -P -p -f /mnt/big/hole 
(1) /mnt/big/hole 
#              Logical        Physical          Length   Flags 
                Offset          Offset                  
1                    0        11161600           53248   
2               524288     17192820736           51200  LAST 

This is because Unix files can contain holes, which are regions which were never written, and 
so do not have any physical storage allocated.  When reading from the file (via read(2)), holes 
read as zeroes.  


Detecting shared extents  
Suppose we want to understand the current sharing relationship among a set of files. We can 
get the list of extents for each file and examine their physical storage locations to see which 
map onto the same location. All the cautions from the previous section apply; e.g., we should 
ensure that the data are stable (using sync(1) or fsync(2) can help).


Note, however, that the Linux ioctl_ficlonerange(2) interface allows a region of a file to 
be cloned to another file (or even the same file!) at any logical offset (although in practice 
sharing is restricted to block granularity). Hence the comparison has to compare every extent’s 
physical locations with every other extent. One solution is to sort a single list of all extents by 
physical address and then look for overlaps. The output will be a list of sets of extents, in  
which every element of a set shares storage; any extent which does not share will be in a 
singleton. Using the extents’ lengths as a secondary sort key simplifies the processing:


	 extA < extB ⊨ physaddr(extA) < physaddr(extB) 
                                ⋁ (physaddr(extA) = physaddr(extB) ⋀ length(extA) < length(extB)) 

Let’s say we are mid-way through the list; the current extent under consideration is cur and the 
next extent is nxt. The current extent cur is any element from a set of extents sh which are 

https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man2/read.2.html


known to share storage (i.e., have the same physical address and length). The physical 
address, logical address and length of an extent are available via functions p, l and len, resp.

if (p(cur) < p(nxt)) { 
    if (p(cur) + len(cur) > p(nxt)) { 
        len(cur)= p(nxt) - p(cur); 
        tail_len= p(cur) + len(cur) - p(nxt); 
        chop_insert_tails(sh, tail_len); 
    } 
    report(sh); 
} else { // p(cur)==p(nxt) 
    add(sh, nxt);  
    if (len(cur) < len(nxt)) { 
        len(nxt) -= len(cur); 
        l(nxt) += len(cur); 
        p(nxt) += len(cur); 
        re_sort(&nxt); 
    } else // len(cur)==len(nxt) 
        get_next(&nxt); 
} 

If cur does not overlap nxt then we are finished with cur, since it must precede nxt (because of 
the sort order); we can report sh as a set of shared extents. If cur begins before nxt but 
overlaps nxt then we split each extent in sh at the overlap and reinsert the tails into the to-do 
list at the appropriate place to maintain sort order; we are then done with sh.


Otherwise, cur and nxt must begin at the same physical address. Either they are the same 
length (in which case nxt is added to sh) or cur is shorter than nxt, in which case we split nxt at 
the end of cur, adding the head to sh and putting the tail back in the to-do list.

Here’s an example of this algorithm in action, listing the shared and unshared extents from the 
earlier example:

$ extents  /mnt/big/b /mnt/big/b1 
(1) /mnt/big/b 
(2) /mnt/big/b1 

Shared:  
File#:                                 1                 2  
#               Length           Logical           Logical  
                                  Offset            Offset  
1               524288                 0                 0  

Not Shared: 
(2) /mnt/big/b1 
#              Logical          Length  
                Offset                  
1               524288          524288  

Clone-aware cmp 
We now have enough to build a version of cmp which is clone-aware. I call it ccmp. It uses 
knowledge about shared extents to skip over them. 

Done properly, this would probably be in C, derived from cmp.  But, I’m going to be lazy here 
and instead write it in bash, using cmp itself to find differences within unshared regions — 
using the -i and -n flags to cmp we can direct to specific regions within the files to be 



compared. I enhanced extents to report, for a pair of files, the boundaries of regions which 
are not shared and hence must be fed to cmp.

$ extents -c /mnt/big/b /mnt/big/b1 

524288 524288 524288 

The heart of ccmp looks something like this:

extents -c $file1 $file2 | while read start1 start2 len 
do 
  cmp -i $start1:$start2 -n $len $file1 $file2 
done 

cmp prints differences along with the offset relative to where it was asked to start comparing, 
so some post-processing is needed (not shown) to sanitize the output.

With some more shell hackery we can support most of cmp’s options, and even massage the 
output to be largely the same. See the repo for extra detail. Note that we cannot make ccmp 
into a POSIX-compliant cmp, because the spec. requires the output to include the line number 
— which can only be obtained by reading all the data.


Making it work on macOS 
MacOS does not provide an extent interface as rich as Linux’s. On macOS, we can get the 
physical address of a block using fcntl(2) with the command F_LOG2PHYS_EXT; this operation 
takes an open file descriptor and an offset in the file and returns the offset of the corresponding 
block on the device on which it resides. In an additional field of the struct passed to fcntl we 
can ask how many contiguous bytes remain at that offset, which is returned via the same field:

static off_t l2p(unsigned fd, off_t off, off_t max, off_t *pcontig) { 
    struct log2phys ph= {0, max, off}; 
    if (fcntl((int) fd, F_LOG2PHYS_EXT, &ph) >= 0) { 
        if (pcontig != NULL) *pcontig= ph.l2p_contigbytes; 
        return ph.l2p_devoffset; 
    } 
    if (errno == ERANGE) 
        return -1; // hole 
    fail("fcntl failed! %s\n", strerror(errno)); 
    return -2; // never reached 
} 

In the event that we run into a hole, we can use the command SEEK_DATA with lseek(2) to 
skip over the hole to the next allocation. Here’s the code to build extents from the fcntl 
returns:

    off_t off= 0L; 
    while (off < file_size) { 
        off_t contig; 
        off_t ph= l2p(fd, off, file_size - off, &contig); 
        if (ph >= 0) { 
            if (contig <= 0) fail("contig not positive: %d\n", contig); 
            new_extent(off, ph, contig); 
            off += contig; 
        } else { // skip over hole 
            off= lseek(fd, off, SEEK_DATA); 
            if (off < 0) fail("lseek failed: %d\n", strtoerror(errno)); 
        } 

https://pubs.opengroup.org/onlinepubs/009695399/utilities/cmp.html
https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man2/fcntl.2.html


    } 

Performance 
Let’s give it a spin.  If we try ccmp on a pair of small files which are not clones, the performance 
is (as expected) worse than cmp, since we’re doing extra work, and some of it in bash.

$ time cmp cmp.o opts.o 
cmp.o opts.o differ: char 17, line 1 
        0.00 real         0.00 user         0.00 sys 
$ time ccmp cmp.o opts.o 
cmp.o opts.o differ: char 17 
        0.02 real         0.01 user         0.01 sys 

However, if we apply it to clones, things improve.  On my machine, a 2018 MacBook Pro, with 
the files on an external drive (you’ll see why in a moment), comparing clones of 10 MB takes 
the same time in cmp and ccmp.  

$ ls -lh foo bar 
-rw-r--r--  1 mario  admin    10M Sep 12 13:40 bar 
-rw-r--r--  1 mario  admin    10M Sep 12 13:40 foo 
$ time cmp foo bar 
        0.02 real         0.01 user         0.00 sys 
$ time ccmp foo bar 
        0.02 real         0.01 user         0.00 sys 

Caveat: take all these numbers with a pinch of salt. If you repeat the comparisons, the times 
get shorter, presumably due to file caching, but I think the first timing is more representative of 
a real scenario. 

Once we get bigger than 10MB, ccmp pulls ahead (if there is substantial sharing):

$ ls -lh foo bar 
-rw-r--r--  1 mario  admin   1.0G Sep 12 13:42 bar 
-rw-r--r--  1 mario  admin   1.0G Sep 12 13:42 foo 
$ time cmp foo bar 
        5.97 real         0.65 user         1.03 sys 
$ time ccmp foo bar 
        0.02 real         0.00 user         0.01 sys 

And by the time we get to clones of a terabyte, ccmp is much faster:

$ ls -lh big* 
-r--r--r--  1 mario  admin   1.0T Aug  4 14:12 big.jah 
-r--r--r--  1 mario  admin   1.0T Aug  4 14:14 big2.jah 
$ time ccmp -bl big.jah big2.jah | wc -l 
     135 
        18.2 real         3.94 user         5.01 sys 
$ time cmp -bl big.jah big2.jah | wc -l 
     135 
        303m5.2 real      6m25.0s user       21m51.9 sys 

You read that right: 18 seconds vs. 5 hours, a 1000-fold speedup! This is a comparison of two 
clonefiles with >100 randomly selected bytes altered in one.

On Linux I’ll compare using XFS, since ext4 does not support reflink. (You can easily create an 
XFS filesystem in an ext4 file and mount it, as explained here.) On my aging (SSD-based) Linux 
laptop, the break even point for cmp vs ccmp is also at around 10 MB.


https://digital-domain.net/fs-img.html


As an extreme test, let’s create a file that contains only two blocks of random data, A and B, 
with each block reflinked repeatedly in the same file in the sequence ABABA…, repeated 1000 
times:

$ ls -lh self.dat 
-rw-r--r-- 1 mario mario 7.9M Sep 15 14:49 self.dat  

If we compare the file with itself but at starting offsets differing by an even multiple of block 
size, all comparisons are elided, whereas at odd multiples nothing is elided:

$ time ccmp -i 0:8192 -bl self.dat self.dat | wc -l 
cmp: EOF on self.dat 
0 
      0.05 real        0.02 user         0.04 sys 
$ time ccmp -i 0:4096 -bl self.dat self.dat | wc -l 
cmp: EOF on self.dat after byte 8196096 
8164080 
      7.30 real        7.01 user         0.52 sys 

Summary 
Clonefiles allow for block-level sharing in modern Unix filesystems, but because they’re 
relatively new few tools know about them. I’ve described a new tool I’ve written to explore 
clonefiles, which can enumerate the sharing relationships among a set of files. It’s also possible 
to make some tasks which involve enormous clone files much faster (when the clones share a 
lot) and my tool enables a version of cmp which can skip over shared regions.


Appendix: Source code 
Source code is available at https://github.com/mwolczko/extents
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