
Non-Volatile Memory and Java: Part
4
Mario Wolczko

A series of short articles about the impact of non-volatile memory (NVM) on
the Java platform.

In Part 1 I introduced the opportunities presented by Intel’s new Optane
persistent memory and NVRAM in general
Part 2 presented the software interface of Optane PM.
In Part 3 I discussed the software engineering challenges arising from
the combination of hardware and software characteristics.

In this part, I will address some of the choices specific to the Java platform.

Part 4: Java and non-volatility

In addition to the considerations already described, Java brings additional
opportunities and challenges.

Java is the most widely used programming language. In my view, the
biggest challenges are to integrate NVM support in a way which does not
alienate or confuse many of the existing practitioners, nor requires massive
surgery to existing code to take advantage of non-volatility.

Every programming language has a design center — a set of values,
characteristics, practices and associated lore to which programmers
become accustomed as they become more experienced. Languages vary
widely in this respect, which is a good thing — it’s best to choose the right
tool for the job. Dynamically typed languages value malleability; weakly
typed languages value performance. Java, in contrast, requires the
programmer to specify types so that type errors cannot occur at runtime.

https://medium.com/@mwolczko?source=post_page-----17f7a7f78f1e----------------------
https://medium.com/@mwolczko/non-volatile-memory-and-java-7ba80f1e730c
https://medium.com/@mwolczko/non-volatile-memory-and-java-part-2-c15954c04e11
https://medium.com/@mwolczko/non-volatile-memory-and-java-part-3-ebe305ef4bc4


Java SE VMs have provided excellent peak performance through the use of
dynamic feedback-mediated compilation since the late 1990s. Startup
performance and pause times have been more of a problem, but a section
of the community has been pressing implementors to improve these and
the vendors have been delivering: heavyweight compilation has its own
thread(s), concurrent low-pause GC has been the subject of much R&D,
and ahead-of-time compilation is addressing startup.

Given this background, any extension for NVM should do its best to avoid
backward steps in any of these areas. There will almost inevitably be a
decrease in peak performance because the underlying NVRAM is slower
than DRAM. Additionally, the machinery to implement recovery will impose
costs, but it’s important to try to minimize these, consistent with the higher-
level goals of programmer productivity and compatibility. It’s a hard
problem, and will take considerable effort from many people to solve.

This is just a hunch but I believe that several viable alternatives will emerge,
each with its strengths and weaknesses. This is to be encouraged; the
community should understand the trade-offs and can provide invaluable
feedback. If no clear winner emerges, it may even be that several different
approaches will co-exist for many years. Some approaches may have
technical superiority but require more programmer training or adaptation of
existing code — these can be adopted over the longer term, but are less
likely to gain early adoption. The Java platform has evolved considerably
over its more than 20 year lifetime, and if it is to last another 20 years it will
evolve still further.

Resilience is key

For NVM to be successful, applications must be able to correctly maintain
their data structures over long periods, and must be resilient to failures — if
we discard NVM state at every failure, the only gain will be faster planned
restarts. This resilience will require additional programmer effort, to specify
points of consistency for recovery. Worse, testing recovery is challenging,

https://www.graalvm.org/docs/reference-manual/aot-compilation/


to say the least: there are a vast number of points at which failure could
occur, compounded by many concurrent states and interactions, and so
trying to establish correctness by exhaustive simulation of failures does not
appear practical. Instead, the programmer will have to arrive at correctness
largely by construction and reasoning, and the design of the facilities will
play a large role in determining how difficult this is.

Achieving resilience requires work. Can any work be saved? The biggest
prize would be to eliminate the burden of maintaining an additional
representation of vital state in secondary storage and all the code that goes
along with that. This will only be possible when:

(i) failures are acceptably mitigated (programs correctly implement
consistency and recovery works well), and

(ii) the software versioning problem (also known as dynamic software
update) has been addressed: i.e., we understand how to evolve in-memory
data structures as the program evolves, and the tooling and training are in
place.

The benefits from this additional effort are faster restart time and low-
latency updates, and so every architect will have to weigh the advantages
against the considerable effort required to achieve them.

On- or off-heap persistence?

Should it be possible to persist Java objects, or should persistence be
confined to off-heap memory? Until recently, off-heap data had to be
accessed via calls to native code through the Java Native Interface (JNI), or
via sun.misc.Unsafe, or via java.nio interfaces such as ByteBuffer (see JEP
352). The approach taken by Intel’s Persistent Collections for Java library is
to use off-heap persistence (more on this library in a future article).

JNI data access is both cumbersome and relatively slow. A new mechanism

https://en.wikipedia.org/wiki/Dynamic_software_updating
https://openjdk.java.net/jeps/352
https://github.com/pmem/pcj


to access external code and data is being defined by Project Panama, and
this promises to make access to off-heap data considerably easier and
quicker.

Will off-heap persistence suffice, or should Java be enhanced to allow Java
objects, arrays, classes, etc., to reside in NVRAM? While off-heap access
may satisfy immediate needs and is available for use now, using JNI, and
soon via Panama, it seems inevitable that there will be a desire to make
regular Java entities persistent. After all, the promise of NVRAM is a
compatible load-store interface; other than immediate availability, there is
no advantage to exploiting NVRAM via a foreign data/code interface and it
has the twin disadvantages of programmer complexity and additional
overhead (e.g., duplication of metadata on- and off-heap; extra instructions
to cross the language boundary, and space overhead).

Additional challenges

Unmanaged or “native” code
A potential source of NVM heap corruption will be bugs in unmanaged code
in the same address space. In the best case, the result is a failure in the
managed code and data are reverted to an earlier, consistent and correct
version. In the worst case, data are corrupted silently and the error is
undetected until something really bad has happened (e.g., the erroneous
transfer of a large sum of money). This is not a new problem — but the
possible corruption of persistent data via erroneous memory operations is
new, and the volume of such data could make it more likely.

Garbage collection of very large heaps (terabyte and beyond) is rarely
done and there are potential problems: induced pauses, the CPU resources
dedicated to GC, the memory wasted by GC falling behind, and the
potential of system failure due to memory exhaustion if the GC cannot keep
up. Although NVM will be accessed via conventional virtual addressing it is
unlikely to be paged since this would compromise the low update latency
and so there will be a hard limit on NVM usage. On the plus side, when a

http://openjdk.java.net/projects/panama/


persistent heap region is not in continuous use, GC can be done “off-line”
without causing application slowdown. There may be applications in which
this is the preferred mode, because they are sensitive to slowdowns and/or
do not create a lot of persistent garbage.

The stability of heap formats and object layouts
To date, the layout of objects and the format of the heap is of concern only
to the associated JVM instance. They can be changed whenever a JVM is
restarted. However, if heap regions are persistent, then object layout and
heap format have to be stable over longer periods, and a change will have
repercussions, unless the JVM can accommodate multiple formats and
layouts (something no current JVM has been designed to do). It may even
be desirable to have NVM heap data portable not only among versions of
the same JVM implementation, but among different implementations, or
even be directly accessible from languages other than Java.

Persistent type information 
When a persistent heap is attached to an application, how do we guarantee
that the types of objects it contains match the types expected by the
application?

A minimum requirement is that the types are checked to ensure that the
integrity provided by the JVM is not compromised. To verify structural
integrity, the order and type of fields in each object would have to match
those being used by the application. For example, if a persistent object
contains a pair of doubles, then the associated class in the application
would also have to contain a pair of doubles. When a reference type was
encountered, the matching would be performed recursively on the
referent’s fields, and so on. It may be desirable for this matching to be
incremental: eagerly matching all the types in a large persistent heap could
take a long time, and some of them may never be accessed in a particular
run.

Simple structural matching cannot prevent some elementary errors. For



example, if the application believes the double-pair objects to represent
Cartesian coordinates, but they were created as instances of polar
coordinates, the error will likely go undetected if simple structural matching
is all that is provided. A larger degree of safety can be ensured by also
requiring class names to match, but this cannot detect errors due to class
version mismatches (e.g., the heap contains Cartesian coordinates with x
and y coordinates, but the application assumes they are in the other order).
Including and matching field names would eliminate this error, but there can
still be mismatches in the code between the version that created an object
and the version that consumes the object (e.g., in the assumed orientation
of the y-axis).

One possible solution to this problem is have a guaranteed unique ID for
every version of a persistent class, and to check this against the class being
used in the application. For example, a cryptographic hash of the class,
including the bytecode, and dependent on the cryptographic hashes of all
dependent classes (inherited classes, etc.) would suffice to ensure that the
classes really are the same. Or, the ID could be assigned by the
programmer manually (the approach taken by NVM-Direct). The latter has
the advantage that the ID need not change if the underlying change in the
class file is unimportant; otherwise, such a change would result in a
spurious error, but it requires programmers to have a more detailed
understanding of the implications of changes.

Type evolution 
Requirements change, and software must change in response. This often
results in changes to the structure or interpretation of data. In common
practice with volatile data structures this is handled by having the canonical
version of the data reside externally (i.e., not in RAM); when a new version
of the software starts, it builds the updated data structure by populating it
from the external data. This approach could be adopted for non-volatile
data structures, but it has drawbacks: first, it requires that the external copy
exist, together with all the code to maintain it. If resiliency is achieved by

https://github.com/oracle/nvm-direct


mirroring the non-volatile data, there may not be such a copy. Second, re-
loading the data could take a long time, decreasing availability. This is
punitive if the structure is large but the change is simple, such as adding a
new field to a class. Particularly in managed runtimes, it should be possible
to accomplish this without having to rebuild the entire structure; it would be
desirable if the update could be performed incrementally, as old objects
were reused by the new version. This requires extensions to the
programming language that describe such updates, perhaps providing
default mechanisms for simple updates (such as adding a field) and
allowing the programmer to provide extended logic for non-trivial updates.
For Java, a basic mechanism already exists in the form of class redefinition
within the Tool Interface, JVMTI. To be used within Java applications it
would have to be provided not as a tool interface but in a more central role
for use within applications, and it would also have to be implemented
completely (currently, it is optional) and with efficiency guarantees (e.g.,
incrementally).

A more ambitious goal would be to provide direct language support for
versioning, in the manner of UpgradeJ. One potential direction for
exploration would make persistent regions self-describing, in that every
object in the region would be accompanied by a complete class definition
(perhaps augmented with version information). An application would then
access a persistent object only via its accompanying class, with increased
confidence that the code was in sync with the data.

This area is relatively unexplored by earlier work and will require
considerable thought and experimentation before it is fully understood.

—

In the next article I’ll discuss some design choices for Java.

https://docs.oracle.com/javase/10/docs/specs/jvmti.html%23RedefineClasses
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-716.pdf

