
Non-Volatile Memory and Java: Part
2
Mario Wolczko

A series of short articles about the impact of non-volatile memory (NVM) on
the Java platform.

In the first article I described the main hardware characteristics of Intel’s
new Optane persistent memory. In this article I will discuss several software
issues.

Part 2: The view from software

In use, NVRAM will look just like DRAM, and be accessed through the usual
memory-related instructions (load, store, etc.) as virtually-addressed
memory.

Data structures in a filesystem

To enable the long-term organization and access of data in NVRAM, data
will be encapsulated in a filesystem. The file system will allow independent
structures to be contained within separate files, with the attendant
metadata (file name, permissions, time stamps, etc.). Readers of a certain
age will recall the emblematic feature of the 1980s PC, the RAM disk — but
in this case the contents are not lost when the machine is rebooted. And
like a RAM disk, data can also be accessed using filesystem operations, but
that would lose the benefits (immediacy and granularity) of the load-store
interface.

To get the best performance and true memory semantics the filesystem
driver in the OS must provide direct load-store access and not copy data.
The typical access pattern will be to open a file in this filesystem, map it into

https://medium.com/@mwolczko?source=post_page-----c15954c04e11----------------------
https://medium.com/@mwolczko/non-volatile-memory-and-java-7ba80f1e730c


the application’s address space, operate upon the data directly and then
close the file, thereby unmapping the data. This is known as the Direct
Access (DAX) model and is already supported by some of the major OSes
(Linux and Windows).

Placing long-lived data in a filesystem has obvious benefits. There are
established solutions for backup and archiving, hierarchical organization,
access control, space accounting, and so on.

Position independence

It is desirable that the data in a DAX file are arranged to be position
independent. If the contents had to be loaded at a specific address there
would be the possibility of address conflict between independent files, and
the likelihood would increase if a file was to be portable to a variety of
systems and applications. Furthermore, the data in a DAX file might be
simultaneously mapped to different addresses, in different processes or
even within the same process. Additionally, modern OSes provide Address
Space Layout Randomization to make it harder for malware to modify data:
at each run, the address of a data segment is randomized so that learning
the address of a datum in one run is of no benefit when wishing to tamper
with the datum in subsequent runs.

One way to achieve position independence is to have all internal references
be self-relative. Another is to embed relocation metadata allowing the
contents to be relocated, either all at once when the file is mapped, or
incrementally (e.g., triggered by an initial page fault). Some files may be
very large (terabytes or more) and so non-incremental relocation might
negate the faster start-up advantages of non-volatility. Also, relocation
does not accommodate simultaneous mapping.

Current software does not typically operate on self-relative data, and
programming languages do not typically provide support for it. Changing an
application written in an unmanaged language, e.g., C, to use self-relative

https://www.intel.com/content/www/us/en/support/articles/000032860/memory-and-storage/data-center-persistent-memory.html
https://en.wikipedia.org/wiki/Address_space_layout_randomization


addressing could be a major undertaking. An alternative is to provide
language and compiler support. For example, NVM-Direct, an extended
version of C, requires the programmer to distinguish references within
persistent memory and makes those self-relative; the compiler takes care of
the details. This is a place where a managed runtime, e.g., the JVM, can
help, by providing self-relative addressing transparently to the application,
which would be unaware of the change.

The volatile memory hierarchy above NVRAM

Accesses to NVRAM are usually mediated by the memory hierarchy, which
contains several levels of caching and buffering. This hierarchy is built from
conventional, volatile memory and will lose its contents on power loss.
Hence a store to NVRAM will not become durable until the cache line
containing the modified data is written to NVRAM.

The astute reader will ask: at what point does a write become durable?
Between the caches and the NVRAM chips is control logic holding volatile
state, such as additional buffering. Even after flushing the cache, how does
one know that the data have left these buffers and made it to the NVM
chips? The answer is: it doesn’t matter. Intel guarantees that in the event of
power loss the volatile state of the memory controllers will be committed to
NVM. Presumably there is an available and sufficient source of energy
(such as a supercapacitor). This property is, somewhat confusingly, called
Asynchronous DRAM Refresh (ADR) — the connection to DRAM refresh is
somewhat opaque. For more details see Persistent Memory Programming
and this Intel article by Andy Rudoff.

Incidentally, it is unlikely that state held on the CPU (registers, caches) will
become non-volatile within, say, much less than a decade. Although some
technologies under development, e.g., Spin-Transfer Torque RAM, show
promise as a non-volatile replacement for SRAM (Static RAM, the kind used
for caches) these are unlikely to be competitive soon (Emerging Memory
Technologies, Yu and Chen, 2016). One exception is in the emerging field of

https://github.com/oracle/nvm-direct
https://en.wikipedia.org/wiki/Memory_refresh
https://www.usenix.org/system/files/login/articles/login_summer17_07_rudoff.pdf
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
https://ieeexplore.ieee.org/document/7495087


so-called Non-Volatile Processors. The idea here is to use non-volatile state
within processors intended for energy-harvesting IoT applications (i.e.,
which run ephemerally, only when enough energy can be obtained from
their environment). However, we will not consider this further, as it is not
relevant to processors in data centers and on desktops.

Writing cache lines to NVRAM

Intel has added two instructions to x64 to assist the writeback of cache
lines:

CLFLUSHOPT (Flush Cache Line Optimized) evicts every cache line
containing a specified address. Unlike the older CLFLUSH, it is not
ordered with respect to writes to other cache lines.
CLWB (Cache Line Write Back) writes back a modified cache line but
does not force its eviction, and so is the more useful of the two (or
three).

To ensure durability, a write back instruction will have to be inserted into
applications after non-volatile updates to each cache line; by the
programmer (or library writer) in an unmanaged language (or perhaps by
the compiler, if it knows when non-volatile data are being modified), or by
the runtime of a managed language. These instructions update NVRAM
asynchronously; a fence instruction can be used to wait until the update is
durable. An alternative is to use msync() or an equivalent, but this is likely
just a wrapper for the writebacks and fence and incurs system call
overhead.

One proposed scheme that obviates the writebacks and fences is to have
the system store sufficient energy that in the event of power loss it can
write back from the caches all unsaved non-volatile data. In a system
implementing this scheme writes would, in effect, become durable
immediately, and render the special instructions unnecessary. This has
become known as extended ADR; I don’t believe any systems incorporating

https://ieeexplore.ieee.org/document/7927131
http://man7.org/linux/man-pages/man2/msync.2.html


this have been announced. The WBINVD (Write Back and Invalidate Cache)
instruction is somewhat related, but not a complete solution: it writes back
the contents of all caches, but then invalidates them (undesirable); there
not does appear to be a way to know when the writebacks have completed,
as execution continues immediately; and this is a privileged instruction and
thus incurs system call overhead. WBNOINVD (Write Back and Do Not
Invalidate Cache, coming in Ice Lake) is the same but without the
invalidation.

The Observability Problem

Having visibility separate from durability plants a trap for the unwary, as my
colleague, Bill Bridge, has pointed out (see article below for the full story).
To summarize: After a thread updates a shared location in NVRAM, the
update becomes visible (via cache coherence) before the value becomes
durable (after the write back). This leaves a window in which another thread
can take actions based on seeing the new value, but before it can know the
value is durable. This may include making dependent updates elsewhere,
which can become durable before the original; a failure at this point, e.g.,
due to a crash or power failure, can lead to inconsistent state during
recovery.

—

In the next article I’ll look at some implications of these hardware and
software characteristics.

THE OBSERVABILITY PROBLEM WITH PERSISTENT MEMORY

Bill Bridge, Oracle

I have uncovered an observability problem with all persistent memory
designs I have ever heard of. The basic issue is that a store to persistent
memory is observable before it becomes persistent. It is possible for

https://medium.com/@mwolczko/non-volatile-memory-and-java-part-3-ebe305ef4bc4?source=friends_link&sk=89a8d98f1eb9acc00d9320e3a1003282


another processor to see the data and make another update that becomes
persistent before the observed data. This creates a window where a power
failure can leave inconsistent data in persistent memory. The fix is for a load
from a persistent memory location to only see persistent data. I think there
is always a software way around the problem if you are aware of it, but that
is not a reliable solution.

Controlling Persistent Memory Contents

It is generally recognized that software needs to control the order of
updates to persistent memory to ensure the data is consistent after a
processor reset or power failure.

In today’s processors, without persistent memory, a store to memory goes
into the processorcache. Eventually the modified cache line may get
flushed from the cache to DRAM. If another processor loads the modified
data before it goes to DRAM, then it will get the data from the
originalprocessor’s cache. Thus the new data is observable before it gets to
DRAM. This is perfectly fine for DRAM since all DRAM content is lost if there
is a power failure or system reset. (This is an important recovery technique
for all computers.)

With persistent memory this mechanism is not acceptable since the result
of a store could sit in a processor cache indefinitely and never become
persistent. The generally proposed solution to this problem is to provide a
mechanism for the software to force the modified cache line to be written to
persistent memory. The mechanism includes a means of pausing until the
persistent memory acknowledges that the data was successfully written
and will be visible if there is a reset or power failure.

Suppose a program needs to update two persistent memory locations A
and B ensuring B is only persistent if A is persistent. The steps would be as
follows:



1. Store new value to A
2. Force A to be persistent
3. Store new value to B
4. Force B to be persistent

This ensures that any program that sees the new value of B will also see the
new value of A. This is true even if the system is rebooted after step 4.
However if there is a reset or power failure before step 4 completes then
the new value of B will not be visible after a reboot, even though it was
visible to other processors after step 3.

The Observability Problem

In the example above, another software thread could read the new value of
B as soon as step 3 completes. It could then update other persistent
memory locations based on seeing the new value in B. The other memory
locations could be on a different memory controller so that they could
become persistent before the new value is persistent in B.

In none of the persistent memory proposals I have ever heard of is there an
efficient means for a reader to know if the data from a load instruction is
persistent or not. One could force the memory location to be persistent
immediately after the load. Usually the force would not actually find the
data to be dirty, but it is still a lot of overhead. The force cannot be done
before the load since there could be a new value stored just after the force.

A Realistic Example

A circular buffer is a common technique used to asynchronously
communicate between two different threads of execution. One would think
that the queue contents could be preserved through a reboot by putting the
data structures in persistent memory. However using the same algorithm
with persistent memory will encounter the observability problem. The queue
can become persistently corrupt even with the correct forces to persistent



memory.

The persistent circular queue in this example has the following
characteristics:

There is a Producer thread that is storing records into the persistent
queue.
There is a Consumer thread that is fetching records from the persistent
queue.
There is a persistent IN pointer that is advanced by the Producer after
a record is stored in the queue
There is a persistent OUT pointer that is advanced by the Consumer
after a record is processed
If OUT and IN are equal the queue is empty.
Records after the OUT pointer and before the IN pointer are waiting in
the queue.

Here is a scenario where the queue becomes corrupt due to the
observability problem:

Producer Thread:

1. Reads IN and OUT seeing that they are equal and thus there is room to
store a new record.

2. Stores the record in circular buffer slot pointed to by IN.
3. Forces the record data to be persistent.
4. Advances IN to include the new record in the contents of the queue.
5. An interrupt switches to an OS context. Producer execution is resumed

after ten microseconds.
6. Forcec the IN pointer to be persistent, but power fails before the new

value becomes persistent.

Consumer Thread:



1. Reads IN and OUT seeing that they are equal so there are no records to
process.

2. Uses MWAIT to wait for the IN pointer to advance.
3. MWAIT completes and sees new IN pointer indicating there is a record

to process. However IN is not persistently updated as yet. (This is the
observability problem)

4. Processes the new record faster than the interrupt handler that paused
the Producer.

5. Advances OUT to match the new IN pointer indicating the queue is
empty.

6. Forces the OUT pointer to be persistent. This completes successfully
making OUT persistent.

7. Power fails leaving IN not advanced but OUT has advanced.

After a reboot the queue is not empty as it should be. Since IN was not
advanced, OUT equals IN+1. In the logic of a circular buffer this means the
buffer is full. If the queue has fixed size records the contents of the queue
will be all old records that were already processed. If the queue handles
variable size records then the OUT pointer could be in the middle of an old
record and the contents will be garbage.

There is a similar problem with a full queue and an OUT pointer advance
that does not become persistent while the IN pointer advance does become
persistent. With fixed size records this makes a full queue become empty.

The Solution

The most robust solution is to ensure a load from a persistent memory
location only sees data that is persistent. This is likely to involve a change to
the cache coherency algorithms to pause the load until the memory
controller has made the data persistent. This will make persistent memory
work the way most people would assume it works.

There is a software only solution for the circular buffer problem. There



would be an IN pointer in DRAM and an IN pointer in persistent memory.
Similarly there would be a DRAM and persistent OUT pointers. Adding or
removing a record from the queue would first update the persistent pointer
and ensure it is persistent. Then the DRAM pointer would be updated to
reflect the persistent pointer. Only the DRAM pointers would be read for
finding space or records in the queue. At reboot, the DRAM pointers would
be reinitialized from the persistent pointers.

An alternative solution is to flush the current value of the IN or OUT pointer
to NVM after loading it into a local variable. This ensures the value in the
local variable is either the current persistent value or a value that is a
previous version of the persistent version. Flushing to NVM before loading
could see a new value that never gets persisted.

I expect there is a software solution to the problem for every data structure.
However there are several issues with leaving this up to software.

Many developers would not realize there was a problem
Every data structure is likely to have a different solution even though
the basic concept of a DRAM and persistent copy of all metadata will
work in many cases.
The problem is likely to be so infrequent that it would not be found
even in stress testing.
If a problem occurred in stress testing or at a customer site it would be
exceedingly difficult to diagnose.
If the developer did consider the issue and coded for it, there does not
seem to be any wayto force the race condition to test the code. As a
wise man once said, “If it is not tested, it is broken.”

Conclusion

The observability problem with persistent memory can cause real world
corruption of persistent data. The corruptions are so rare that they are
unlikely to be diagnosed. The best solution is to design processors so that a



load from a persistent memory location will only see data that is persistent.


