
Department of Computer Science
University of Manchester
Manchester M13 9PL, England

Technical Report Series
UMCS–88–6–1

Mario Wolczko

Semantics of Object-Oriented
Languages

SEMANTICS OF
OBJECT-ORIENTED
LANGUAGES

ATHESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE

By
Mario I. Wolczko

Department of Computer Science
March 1988

DECLARATION

No portion of the work referred to in this thesis has been submitted in
support of an application for another degree or qualification of this or
any other university or other institution of learning.

Abstract

Object-oriented programming is becoming an important technique in the con-
struction of large software systems. Compelling arguments, like reduced main-
tenance costs, are advanced to encourage its use. To maximise the advantages
of such methods, object-oriented programming languages need to be well-
designed. When selecting the main features of a programming language, or
choosing between alternative designs, formal methods of semantic analysis are
invaluable. To date little attention has been given to the formal description of
object-oriented languages. This thesis introduces a framework for describing
the semantics of object-oriented languages.

To characterise the important features of object-oriented languages, an ide-
alised object-oriented language is described and its semantics specified for-
mally, using the denotational style of VDM. Design alternatives are explored
in the same way. Several general principles of object-oriented language de-
sign are introduced, and the alternatives reviewed in light of these princi-
ples. By choosing apposite semantic domains, the fundamental concepts of
object-oriented systems are exposed: two message-passing schemes, based on
dynamically-bound procedure call and delegation, are presented; class- and
prototype-based systems are described; and special emphasis is given to the
different approaches to class-based multiple inheritance. The encapsulation of
behaviour within classes is discussed, and suggestions are made as to how this
might be best achieved. A variety of object-oriented control mechanisms are
also surveyed.

iii

iv

Acknowledgements

Many people have beneficially influenced this thesis. Foremost among them is
Cliff Jones, my supervisor. His deep insight into programming language design
and description, and his ability to ask simple yet penetrating questions, have
vastly improved the quality of this work. I must also thank Ifor Williams and
Trevor Hopkins for numerous stimulating conversations about object-oriented
programming, and my colleagues in 2.90 for a convivial atmosphere in which
to do research. Many coffee-break discussions with Michael Fisher were also
helpful in crystallising my ideas. Andrew Barnard and Michael Fisher receive
special thanks for their careful reading of a draft of the thesis.

The work described in this thesis was supported by a studentship from the
Science and Engineering Research Council.

Colophon: This thesis was typeset in Times Roman using LATEX, and printed
on an Apple LaserWriter Plus.

v

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Background and Aims . 2
1.2 Limitations of this Work . 4
1.3 Overview of the Thesis . 5

2 Formal Semantics of Object-Oriented Languages 7
2.1 Objects, their Organisation and Inter-Object Communication . 8
2.2 The Generalized Object Model 9

2.2.1 Guards . 11
2.2.2 Example . 13
2.2.3 Problems . 14

2.3 Message Sending—Concurrent or Serial? 15
2.4 The Semantics of POOL . 16
2.5 The Actor Model of Computation 20

2.5.1 The Semantics of Actor Systems 23

3 A Model of Object-Oriented Systems 25
3.1 Objects . 26
3.2 Internal States . 27
3.3 The Nature of Object-Oriented Languages 28

vi

3.4 Object-Oriented Principles 31
3.5 Abstract Syntax . 32

3.5.1 Classes . 32
3.5.2 Methods, Messages and Expressions 33

3.6 Semantic Domains . 35
3.7 The Meaning Function for Expressions 40
3.8 Creating Objects . 42
3.9 Primitive Methods . 44

3.9.1 Primitive Equivalence 46
3.9.2 Enumerating Objects by Class 48
3.9.3 Changing the Identity of Objects 49

3.10 Primitive Classes . 50
3.10.1 Booleans . 51
3.10.2 Integers . 52
3.10.3 Symbols . 52
3.10.4 Indexable Objects 55
3.10.5 Other Types of Primitive Objects 58

3.11 Classes as Objects . 58
3.11.1 Class and Global Variables 60
3.11.2 Mutable Classes . 63

3.12 An Alternative to Classes: Prototypes 64
3.12.1 Identifiers and Assignments 66
3.12.2 Sending and Delegating Messages 67
3.12.3 Summary . 69

4 Inheritance 70
4.1 Single Inheritance . 71

4.1.1 Context Conditions 74
4.2 Static Binding of Messages 78
4.3 Multiple Inheritance . 82

4.3.1 Graph Inheritance 83
4.3.2 Linear Inheritance 87
4.3.3 Tree Inheritance . 91

4.4 Inheritance and Encapsulation 98
4.4.1 Private and Subclass-Visible Methods 99

vii

4.4.2 Static Binding of Messages, Revisited 106
4.5 Inheritance and Primitive Classes 108
4.6 Summary . 109

5 Control Structures 110
5.1 Blocks . 112

5.1.1 Access to Non-local Variables from within Blocks . . 115
5.1.2 Uses of Closures . 118

5.2 Continuations . 118
5.2.1 Formal Semantics 119
5.2.2 Other Types of Block 124

5.3 Dynamic Environments as First-Class Objects 127
5.4 Primitives . 128
5.5 Concurrency . 129

6 Conclusions 130
6.1 Future Research . 131

A The Direct Semantics of a Complete Language 132
A.1 Abstract Syntax . 133
A.2 Context Conditions . 135
A.3 Processed Abstract Syntax 140
A.4 Processing functions . 141
A.5 Semantic Domains . 144
A.6 Meaning Functions . 146
A.7 Primitives . 152

A.7.1 General primitives 152
A.7.2 Arithmetic . 152
A.7.3 Primitives on Class objects 153
A.7.4 Block primitives . 153
A.7.5 Primitives on Indexable objects 154

B The Continuation Semantics of a Complete Language 156
B.1 Changes to Abstract Syntax 156
B.2 New Context Condition . 156
B.3 Changes to Processed Abstract Syntax 157

viii

B.4 Changes to Processing Functions 157
B.5 Changes to Semantic Domains 157
B.6 Meaning Functions . 158
B.7 Primitives . 164

B.7.1 General primitives 164
B.7.2 Arithmetic . 165
B.7.3 Block primitives . 165
B.7.4 Primitives on Class objects 165
B.7.5 Primitives on Indexable objects 166

C Summary of Notation 168

D Index to Types and Functions 170
D.1 Index to Types . 170
D.2 Index to Functions . 174

Bibliography 178

ix

List of Figures

2.1 An object in Nguyen and Hailpern’s Object Model 10
2.2 Method execution in the Generalized Object Model 12
2.3 Synchronisation between objects in POOL 18
2.4 A transition in the state of an actor 22

4.1 Three different inheritance schemes 83
4.2 Problems with graph and linear inheritance 92

x

Chapter 1

Introduction

Computer science is the first engineering discipline
ever in which the complexity of the objects created
is limited by the skill of the creator and not limited
by the strength of the raw materials. If steel beams
were infinitely strong and couldn’t ever bend no mat-
ter what you did, then skyscrapers could be as com-
plicated as computers.

Brian K. Reid

The aim of the object-oriented approach to programming is to control com-
plexity. Object-oriented design consists of decomposing a problem into sub-
problems, each of which can be mapped onto an “object.” The major advance
made by object-oriented programming languages over conventional languages
is that modularity is enforced at the semantic level as well at the syntactic level.
In a pure object-oriented language, side effects cannot occur.

The structure imposed by the object-oriented approach enables larger, more
complex systems to be built and maintained than was previously possible. In

1

the opinion of the author, this key advance is likely to lead to the widespread
adoption of object-oriented programming techniques.

Although object-oriented programming is not a recent invention, there is
no widely-agreed definition of the term. In 1982, Rentsch [Ren82] wrote:

What is object oriented programming? My guess is that object
oriented programming will be in the 1980’s what structured pro-
gramming was in the 1970’s. Everyone will be in favor of it.
Every manufacturer will promote his products as supporting it.
Every manager will pay lip service to it. Every programmer will
practice it (differently). And no one will know just what it is.

Unfortunately, his predictions seem to be coming true. “Object-oriented pro-
gramming”, together with “structured programming” and “user-friendly” are
rapidly becoming “noise” words.

This thesis attempts to define “object-oriented programming”, by defin-
ing what an object-oriented programming language is. Essential features and
important characteristics of object-oriented languages are described using for-
mal techniques. A series of small, hypothetical object-oriented languages is
developed, and their semantics are defined denotationally. Major features of
object-oriented languages are surveyed formally.

1.1 Background and Aims
Until recently there were few object-oriented programming languages. Their
history begins with Simula, which introduced the notions of object, class and
inheritance [BDMN73]. Dahl, one of the inventors of Simula, has described
themotivation behind the introductionof classes and objects into Simula from a
desire to have multiple, co-existing instances of ALGOL-like blocks [Dah87].
The identifiers within each block were to be in private scopes; this is the hall-
mark of an object-oriented language. These blocks are now known as objects.
Objects with identical behaviour were grouped into classes, and parts of the
code associated with each class could be inherited from other classes. Ev-
ery ALGOL-like procedure was associated with a class, and only the internal
variables of objects belonging to that class were in scope within a procedure.
These restricted forms of procedure have come to be known as methods.

Building on the ideas from Simula, the series of Smalltalk languages re-
fined the notion of object-oriented programming, and were the first “pure”
object-oriented languages [Ing83, Sho79, Ing78, GR83]. (By “pure”, we mean
that all values are objects.) Simula allowed one object to access the internal
state of another directly; Smalltalk insists that all inter-object communication
is accomplished by objects sending messages to each other, where a message
is a dynamically-bound procedure call invoking a method.

Since Smalltalk-80,1 new object-oriented languages have been invented.
Most are hybrid languages, mixing object-oriented features with older, con-
ventional languages. For example, C++ and Objective-C add object-oriented
features to C [Str86, Cox86]. A family of Lisp-based object-oriented languages
has arisen: LOOPS and Flavors, along with their Common Lisp successors,
CommonLoops, New Flavors, CommonObjects and the Common Lisp Object
System [BS83, WM80, BKK+86, Moo86, Sny85, DG87]. New, pure object-
oriented languages have also been invented (e.g., Trellis/Owl [SCB+86], Eiffel
[Mey87] and POOL [Ame85]). These languages have contributed several new
ideas to object-oriented programming. The development of the actor-based
languages [Agh86] has progressed in parallel; their emphasis is on concurrent
models of computation.

Whilst this list is not exhaustive, it gives some impression of the diversity
of object-oriented languages. However, this thesis shows that a few simple
principles underlie all the object-oriented features of these languages. The
essence of object-oriented languages is explained by identifying their intrinsic
features and describing each in isolation. Using a minimal core language, the
principles of objects, messages, dynamic binding and inheritance are explained
formally, using denotational semantics. This has two benefits: a denotational
definition abstracts away irrelevant detail, concentrating on the important as-
pects; it also serves as a comparison with the denotational definitions of other
programming styles [BJ82, RC86, Sch78, Ten73]. In this way, this thesis an-
swers the questions, “What is object-oriented programming?” and, “How is it
related to other programming styles?”

Having provided a formal taxonomy for object-oriented languages, another

1Henceforth, “Smalltalk” will be used to denote the Smalltalk-80 programming language, as
defined in [GR83].

aim of this thesis is to outline principles and guidelines for the designers of fu-
ture object-oriented languages. This task is inseparable from the formal defini-
tion; the definition provides many insights into the design of these languages,
and suggests ways of improving them. In the author’s opinion, the best foun-
dation for language design is the study of semantic models; others have also
concluded this [Ten77, AW82]. It is hoped that the models and principles
presented here will aid future designers.

The semantics presented in this thesis are denotational, in the style of
Bjørner and Jones [BJ82], although the notation is based on more recent VDM
[Jon86]. A model-oriented approach has been used in preference to an ax-
iomatic approach because it is felt that language designs can be analysed more
clearly in this way; axiomatic semantics are better suited to reasoning about
programs.

1.2 Limitations of this Work
Language features not germane to object-oriented programming have been ig-
nored. This means that some features, important to the art of programming and
useful in object-oriented programs, have been left out. In particular, the inter-
action between concurrency and object-oriented programming has not been
treated thoroughly. Agha provides an operational definition of concurrency in
the actor model of computation in [Agh86], and America et al. define con-
currency in the POOL languages in [AdBKR86]. Chapter 2 discusses these
models and explains why they are not suited to the wider variety of languages
described here.

The treatment of the notion of “program” is also somewhat unusual. Con-
ventional denotational definitions (e.g., the definition of Pascal in [BJ82])model
a program as a function from inputs to outputs; program executions have a fi-
nite duration, and their only observable effects (semantically speaking) are
their outputs. This model is inappropriate when applied to persistent systems
[ABC+83], in which the events of semantic interest are mainly changes to the
persistent store. In the persistent model of programming, the data manipu-
lated by a program can outlive that program without being explicitly “output.”
When reasoning about the behaviour of program code in a persistent system,
one is interested in the effects of the code on the persistent data, rather than in

any “output.”2 Another property of this approach is that errors do not cause
the program to terminate with no output; changes made to persistent data re-
main. Because a number of object-oriented languages are based on the per-
sistent model, and the semantics of input/output and errors are not particularly
connected with object-oriented programming, these aspects have been omitted
from the semantics.

Inheritance is described in Chapter 4. Although inheritance is widely as-
sociated with object-oriented programming, there is no reason to think that
object-oriented programming necessarily includes inheritance, or that inher-
itance could not be used in other programming styles. However, this thesis
makes no attempt to describe inheritance in more general terms. For a dis-
cussion of inheritance in relation to logical reasoning, the reader is referred to
[Tou86].

Another area not addressed by this thesis is that of type systems for object-
oriented languages. The languages described are strongly typed in the sense of
Smalltalk (i.e., one cannot apply operations to values onwhich those operations
are undefined), but are not statically typed. More is said about this in Chapter 6.

1.3 Overview of the Thesis
Chapter 2 outlines the scope of the formal models introduced in the thesis.
Several previous models are described, and their usefulness with respect to the
variety of language features described in this thesis is assessed. In Chapter 3, a
simple model of object-oriented languages is introduced, by defining a minimal
language and its semantics. Fundamental issues of object-oriented program-
ming are discussed. Chapter 4 adds inheritance to the language of Chapter 3.
Single and multiple inheritance schemes are defined, and their relative mer-
its discussed. Control aspects of object-oriented languages are described in
Chapter 5. Conclusions are drawn in Chapter 6. The semantics described in
Chapters 3–5 are gathered together into complete definitions in Appendices A
and B. An index to the types and functions defined in Chapters 3, 4 and 5 can
be found in Appendix D.

2The Smalltalk system has no fundamental notion of output at all; it is a side effect of manip-
ulating bits in a bitmap, which just happens to be projected onto the screen of a CRT.

Throughout the text the reader is assumed to be familiar with the techniques
of denotational semantics. Schmidt [Sch86] is an excellent introduction to
the field. To avoid using a diversity of notations, descriptions of previous
work in this area have been “translated” into VDM notation where possible. A
summary of the notation used can be found in Appendix C. Acquaintance with
the basic concepts of an object-oriented language is also helpful. The reader
with knowledge of Smalltalk-80 will find the languages described in this thesis
easy to assimilate.

The feminine pronoun “she” has been used in preference to the clumsier
“he/she”; similarly “hers” has been used in place of “his/hers”, etc. A mascu-
line version of this thesis is available on request from the author.

Chapter 2

Formal Semantics of
Object-Oriented Languages

No human investigation can be called real science if
it cannot be demonstrated mathematically.

Leonardo da Vinci

It is easier to square the circle than to get round a
mathematician.

Augustus De Morgan

The central aim of this thesis is to provide the framework for formal models
of a variety of object-oriented languages. To achieve this, the semantics of a
minimal language are defined in Chapter 3, and extended in Chapters 4 and 5.
The purpose of this language is to serve as the glue holding together a number
of features that are central to object-oriented programming. Clearly, the choice

7

of features influences the structure of the formal model. The purpose of this
chapter is to outline the set of important features, and in what ways previous
models do not support them.

2.1 Objects, their Organisation
and Inter-Object Communication

The most important aspect of a formal model of object-oriented languages is
its characterisation of objects. All object-oriented systems have similar no-
tions of what an object is, and the formal model should describe those notions
succinctly. It should capture the essence of “objectness”: the idea that an ob-
ject has an identity that distinguishes it from all other objects (even those with
identical contents), and that an object has internal state that is inaccessible to
other objects. Chapter 3 is devoted to this issue, and introduces two principles
by which the “object-orientedness” of a system can be judged.

Two other questions need to be addressed: “How are objects organised
into systems?” and “How do objects communicate?” Organisation of objects
introduces the concepts of class and inheritance. A model of object-oriented
languages has to capture the ideas of class and inheritance, and do it in a way
that is not specific to any particular scheme of inheritance. Several different
schemes for multiple inheritance exist, and a formal model must be able to de-
scribe all of them. Some object-oriented languages reject the idea that classes
are fundamental concepts, and prefer to base their organisation on prototypes.
It is desirable that a formal model accommodate these languages. These ideas
are described in Chapters 3 and 4.

In most object-oriented languages, objects communicate by passing mes-
sages, where message-passing takes the form of dynamically-bound procedure
calls. When a message is sent from one object to another, a token identifying
the message, called a selector, is used to select the procedure to be invoked.
The selector, in effect, names the procedure, but different objects may have
different procedures, or methods, bound to the same selector. Hence, a se-
lector is an overloaded procedure identifier. The semantics of this form of
message-passing are described in Chapter 3.

Other approaches to message-passing, based on communication between

concurrent processes, have also been suggested. In these systems, every ob-
ject is associated with a process, and a message is either a rendezvous between
two objects (their processes synchronise, and exchange data [AdBKR86]), or is
a “mail item”, queued at the destination object until it is ready to be processed
[Agh86]. Although concurrent message-passing may become widespread in
the future, this thesis concentrates on the procedure-call model of message-
passing, because the techniques for formal description of concurrent compu-
tation are not as well-developed or well-understood as those for sequential
languages. The use of these techniques can complicate a definition to such
an extent that other, important aspects of the definition are obscured. As it is
unlikely that a single model could comfortably embrace both kinds of message-
passing, the most widespread (and to date, important) kind is described.

A successful model will address these three issues, namely the nature of
objects, their organisation and communication, in a way that brings out the
crucial aspects of a language’s design. Although the naturalness of a semantic
definition is subjective, this should not be considered unimportant.

The remainder of this chapter describes previous formal models of object-
oriented languages, and outlines why they are unsuitable for the description of
the language features in consideration here. The Generalized Object Model of
Hailpern and Nguyen [HN87] attempts to cover similar areas to this work, and
is reviewed first. Summaries of the concurrent models of POOL [AdBKR86]
and Actors [Agh86] close the chapter.

2.2 The Generalized Object Model
of Hailpern and Nguyen

In [HN87], Hailpern and Nguyen give an informal description of a formal
model for objects and inheritance. Their model maps every object onto a
CSP process [Hoa85]; objects communicate by passing messages between CSP
ports. Every object has two ports: one is used to communicate source-level
messages, and the other inherited attributes. The semantics of an object is the
set of possible histories of communications on these ports.

Internally, an object consists of a set of local variables, a set of local proce-
dures, and a set of methods. (See Figure 2.1 for a schematic representation of

Figure 2.1: An object in Nguyen and Hailpern’s Object Model

an object.) The local variables and procedures cannot be accessed by external
objects. A method is invoked by sending a message request to the “message
request” port of the object. If the object has a locally-defined method response
to the message, it is invoked, and a reply sent back to the message port of
the original sender. This is termed direct execution of a method. Whilst be-
ing executed, the method may access the local variables and procedures of the
receiver. An object that has sent a message must wait for the reply before
proceeding.

If no local method exists for the message, an inheritance request contain-
ing the original message may be sent to the “inherit” port of a third object.
This is known as execution of an inherited method. If an object receiving an
inheritance request has a method associated with the message, it returns the
method, which can then be executed by the original receiver. Otherwise, the
inheritance request may be forwarded to another object, which may in turn
forward it, and so on, until either a method is returned or the message rejected.
Because supplying an inherited method does not cause a change in the local
state of an object supplying the method, an object can process many inheri-
tance requests concurrently, possibly in parallel with a single direct execution.
(See Figure 2.2 for an illustration of direct and inherited method execution.)

2.2.1 Guards
Associated with each method is a guard, which must match an incoming mes-
sage for the method to be executed. The guard is a triple of the form:

[REQUEST, INHERIT] × [Object name] × [Message selector].
Each field of the triple is optional, and can be omitted. If a guard has

REQUEST as its first field, it only matches messages received on the message
port; if it has INHERIT as its first field, it onlymatches messages received on the
inherit port. If neither is present, then a guard may match messages on either
port.

The optional Object name in a guard selects messages from specific ob-
jects. If it is not present, then all objects match; otherwise only messages from
the single, named object may match the guard.

Every message contains aMessage selector; it is analogous to a procedure
name. A message only matches guards with the same message selector, or

The upper diagram represents an object executing a directmethod. In the lower
diagram, an object executes an inherited method by forwarding the request to
another object, which may in turn forward the request, until a method body is
returned.

Figure 2.2: Method execution in the Generalized Object Model

guards that do not contain a message selector.
In summary, messages to the message-port of an object dest, from an ob-

ject src, of the form (selector, params) can only match guards of the form
(REQUEST, src, selector) or similar guards with one or more of the fields omit-
ted; similarly for messages to the inherit-port, with REQUEST replaced by
INHERIT in the guard. If more than one guard matches a message, the most
specific (i.e., the guard with fewest fields omitted) is chosen if it exists; if
there is more than one most specific guard, then a choice is made between
them non-deterministically.

With each guard is associated one of two types of method:

• A direct method is a piece of executable code; if it is associated with a
REQUEST guard then it is executed by the receiver of the REQUEST; if it is
associated with an INHERIT guard then it is returned as the result. In order
to be independent of any particular programming language, Nguyen and
Hailpern do not describe the detailed form that the code might take.

• An inherited method is a list ofObject names; the message is forwarded
to each object in the list in turn, until one returns a method.

So that a guard can match against a selected set of source objects, the
Object name in the guard can be the name of a view. A view is a collection of
object names; it can be updated at run-time. A message from any object within
the view may match the guard, provided the other two fields also match.

2.2.2 Example
In [HN87], Nguyen and Hailpern give several examples of how their model
can be applied to various object-oriented languages; the following is one of
their examples.

To model a Smalltalk object, every object has a class variable, and the
methods for all REQUESTS are inherited from the class. The associated guard
and method is:

(REQUEST, nil, nil) → inherit from class.

The inherit from clause indicates that the method is inherited from the object
referenced by the class variable.

Classes, being special kinds of Smalltalk object, have additional guards.
Every class has the following variables: a superclass; a class view, containing
all the instances of the class; and a subclass view, containing all the subclasses
of the class. The associated guards and methods are:

(INHERIT, class view, m) → definition of method m
(INHERIT, subclass view, n)→ definition of method n
rest of methods…
(INHERIT, class view, nil)→ inherit from superclass
(INHERIT, subclass view, nil) → inherit from superclass
(REQUEST, nil, nil) → inherit from class

Thus, all messages to an object are forwarded to its class. If the class does
not define a method for the message, it forwards it to its superclass.

2.2.3 Problems
The Generalized Object Model has several shortcomings that cause it to be
rejected as a suitable model for the variety of languages covered in this work.

First, it seems strange that a model based on concurrency is used to model
languages that are inherently sequential in nature. This in itself would be ac-
ceptable if the model could also be applied to concurrent languages, but its
message-passing semantics, based on procedure call, preclude its application
to the concurrent languages of [AdBKR86] and [Agh86], for example.

A more serious problem is that Hoare’s CSP [Hoa85] does not admit the
notion of dynamic creation of an indeterminate number of processes.1 Conse-
quently, Nguyen and Hailpern’s semantics make no mention of the semantics
of object creation. Object creation, and the associated issues of scope, lifetime
and garbage collection are important features of languages like Smalltalk, and
any model that does not describe these concepts has serious shortcomings.

Also, the distinction between direct and inheritedmethods means thatmod-
elling explicit access to inherited methods from within direct methods (such as
is provided by Smalltalk’s super mechanism) is difficult. However, Hailpern
and Nguyen state that they intend to investigate the effect of making inherit from

1Although there are versions which do this.

a conventional statement, removing the distinction between direct and inher-
ited methods; this would seem to rectify the problem.

Finally, the procedure call semantics associated with message-sending are
not defined when the call graph is cyclic. For example, a form of indirect
recursion occurs in Smalltalk when an object sends a message to a second ob-
ject, which then sends a message to the first object. In the CSP semantics, this
causes a deadlock. Nguyen and Hailpern avoid this in the simplest case where
an object sends a message to itself by having local procedures; presumably
sends to “self” should be mapped into calls of local procedures. However, this
does not solve the problem of indirect sends to “self.”

2.3 Message Sending—Concurrent or Serial?
Communication in object-oriented languages is one of the most contentious
issues in the object-oriented programming community. This is reflected by the
variety of binding and communication mechanisms in use. In most object-
oriented languages, message-sending is serial: the sender is inactive while the
receiver is processing the message, and every object is inactive until it is sent a
message. This implies that a single thread of control is passed from one object
to another when a message is sent. Some object-oriented languages introduce
concurrency by adding conventional multi-processing facilities. In Smalltalk,
for example, instances of a special class, Process, can be created and associated
with an executable body of code. When a process object is sent the message
resume, control returns to the sender immediately, but the code associated with
the process can start executing in parallel. To achieve synchronisation between
processes, conventional mechanisms (semaphores) are provided. Otherwise,
there are no special concurrency features.

Multiple processes in a Smalltalk system can interfere when they simulta-
neously use the same object; they may even be executing the same method on
that object at the same time. The instance variables of the object act as shared
variables, and communication (or interference) may take place.

An alternative approach is that objects themselves should be the units of
concurrency. In this view, potentially any object can be an independent, active
process. To preserve concurrency, an object sending a message does not wait
for the receiver of the message to complete processing the message before

continuing with its own task.
In the Parallel Object-Oriented Language (POOL) described by America

[Ame86a], this model of concurrent, active objects is used. Message-sending
is a form of rendezvous between objects; the sender must wait for the receiver
to accept the message, some exchange of data may take place, and then both
sender and receiver may continue execution.

The Actor model of computation as described by Agha [Agh86] also uses a
concurrent approach, but message processing is asynchronous. An object can
send a message to another object at any time, and the message will be placed
on a message queue pending acceptance by the receiver. When the receiver has
processed the message, it may send a reply at any time. No synchronisation
need take place at all.

It should be clear from these brief descriptions that these three models of
computation differ drastically in their notion of what a message is. Moreover,
these differences are reflected in the formal semantics of each language: both
the POOL and Actor semantics given in [AdBKR86] and [Agh86] use opera-
tional definitions based on state transition rules.

Whilst it is desirable to integrate all the different forms of inter-object com-
munication smoothly into the same formal model, it is beyond the power of
current formal description techniques to do this without obscuring much of the
semantics. Certainly it would appear that the simple denotational semantics
given in the rest of this thesis cannot be extended straightforwardly to embrace
concurrent models.

The rest of this chapter is devoted to descriptions of the semantics given
in [AdBKR86] and [Agh86]. These should serve as comparisons against the
semantics in the rest of the thesis, illustrating the gulf between the two ap-
proaches.

2.4 The Semantics of POOL
The Parallel Object-Oriented Language developed as part of ESPRIT project
415 is described informally in [Ame86a]. A formal definition is given in [Ad-
BKR86].

In POOL, every object is an independent process. It has a local, private
state, and communicates with other objects by sending messages. So that an

object can function independently of other objects, it has a body, which is an
executable statement.

Two basic mechanisms are used when a message is sent. The sending ob-
ject executes a message send expression of the form r!m(e1,… , en), which
sends to r the message m with parameters e1,… , en. The receiving object
executes an answer statement of the form answer(m1,… , mk), where m ∈
m1,… , mk , which indicates that the receiving object is ready to receive any
message with one of the listed selectors.

When the sending object executes the message send, it is suspended until
the receiving object executes a matching answer statement; similarly if the
receiving object executes an answer statement, it is suspended until a matching
send occurs. Thus a message creates a rendezvous between two objects; their
processes are synchronised. After the message has been received and accepted,
the sender is suspended while the receiver processes the message. Later, the
receiver returns a result, and the sender proceeds. Meanwhile, the receiver
can execute an optional post-processing section, and then resume what it was
doing before it answered the message. (See Figure 2.3.)

The operational semantics of POOL are given as a transition system over
a set of configurations, Conf . The relation describing valid transitions,→ ⊂
Conf × Conf , is defined inductively by a set of axioms and rules.

A configuration is a quadruple:

Conf = (LStat-set) × Σ × Type × Unit

The first component is a set of labelled statements of the form

(α1, s1),… , (αn, sn)

where each αi ∈ AObj is the name of an object, and each si is the statement
about to be executed by that object. All the α i must be different. The elements
of AObj are tagged natural numbers: AObj: : .

The second component of a configuration is a store:

Σ = (AObj m IVar m AObj)
× (AObj m LVar m AObj∗)

where IVar and LVar are the sets of instance variable names and local vari-
able names. The first component of the store is the repository for all the in-
stance variables: for every object in the configuration there is an element in

Figure 2.3: Synchronisation between objects in POOL

the map that has the values of the object’s instance variables. The second com-
ponent of the store contains activation stacks for the processes associated with
every object.

The third component of a configuration records the class of every object,

Type = AObj m Class name

while the fourth contains the program being executed. (A POOL program
is a set of class definitions, each class definition defining the structure of all the
instances of the class, and the methods for that class. The detailed definition
of the abstract syntax of POOL is omitted here.)

When a program begins execution, a single instance of a distinguishedclass
is created. This object may then create more objects, which may execute in
parallel. Thus the initial configuration for a program U is:

(α0, s), (α0 v NIL | v ∈ ivars(C) , α0 []),
α0 C ,U ,

where C is the distinguished class, s is the body associated with C, and the
ivars(C) are the instance variable names associated with instances of C.

An example of an axiom defining the transition relation is the axiom for
the statement that creates a new object (the new statement):

X ∪ (α , new(C)) , (σ , l), τ , U →
X ∪ (α , β), (β, s) , (σ′, l), τ ′, U

where β ⁄∈ X is a new name, s is the body associated with the class
named C, σ′ = σ † β λx ⋅ nil is σ updated to include the new object β,
and τ ′ = τ † β C is τ updated with the class of β.

Having defined the above transition relation, [AdBKR86] then goes on to

define a similar relation, → ⊂ (GConf × GConf), in which each transition
represents the execution of many statements concurrently. The global configu-
ration defined earlier is replaced by a set of local configurations, each recording
the entire state of an object:

GConf = LConf -set

LConf = AObj′ × Stat × Σ′ × Class name ×Unit

where Stat is the set of (unlabelled) statements and Σ′ is a local store. Most
axioms then take the form

α , s,σ , τ , U → α , s′,σ′, τ ′, U

and the following rules for parallel composition are used to describe con-
current transitions:

X → X′, Y → Y′

X ∪ Y → X′ ∪ Y′

X → X′

X ∪ Y → X′ ∪ Y
In this latter definition, the set of active object identifiers, AObj′, cannot

be the simple set used in the earlier definition, as concurrent new statements
must create objects with differing names. Each AObj is a sequence of natural
numbers; when an object α creates a new object for the nth time, the name of
the new object is α [n].

Points to note:

• The structure of objects, classes and methods is similar to that presented
in Chapter 3, save for the extra state within each object for its activation
stack.

• POOL does not have inheritance in any form, although it seems that it
would be straightforward to add the simple form of inheritance described
in Chapter 4.

• As in Nguyen and Hailpern’s model, if an object sends a message indi-
rectly to itself, deadlock occurs.

The deadlock problem, together with the lack of inheritance, does not make
this model amenable to application to languages such as Smalltalk.

2.5 The Actor Model of Computation
In [Agh86], Agha describes the Actor model of computation developed by He-
witt [Hew79], and defines the semantics of a kernel actor language. The Actor
model has evolved over the last decade in parallel with conventional object-
oriented languages [Hew79], but each seems to have influenced the other only

slightly. Like the models of Hailpern & Nguyen and POOL, the actor model
is based on concurrency. However, the semantics of message-passing, and the
internal computation performed by an actor, are quite different in the Actor
model.

In the Actor model, every object (known as an actor) is passive until it
receives a message. On receipt of a message, an actor processes the message
according to its script. Scripts are also known as behaviours, because a script
defines the response of an actor to any message; it is analogous to a class def-
inition in a conventional object-oriented language. In response to a message,
an actor can:

1. Create new actors, by evaluating new-expressions. Each new-expression
is given the initial behaviour of the new actor to be created.

2. Send messages to other actors (or itself), and

3. Specify its behaviour in response to the next message. If a new behaviour
is not specified, then the same behaviour is used.

The acceptance of a message by an actor is termed an event.
When an actor sends a message, the message is placed in a queue at the

destination actor; no synchronisation takes place. Although the Actor model
has as one of its premises the guarantee of delivery of messages, no arrival
ordering is guaranteed, even for successive messages from one actor to the
same destination.

The script executed by an actor in response to a message cannot have any
internal iteration or recursion, so that no form of deadlock is possible at the
event level. All the statements within a script are executed concurrently. Once
a new behaviour has been specified, an actor can start to process the next mes-
sage in its queue, even though the processing of the current message may not
have finished. This is possible because there is no local state that can be modi-
fied within an actor. The state of an actor is entirely described by its behaviour.
Behaviours are parameterised by two lists: one is a list of acquaintances, the
other a communication list. The acquaintance list is defined when a new be-
haviour is specified, and the communication list is defined when a message is
selected to be processed.

Figure 2.4: A transition in the state of an actor

A behaviour that has been supplied with an acquaintance list is sometimes
termed an actor machine. During the processing of a message, an actor ma-
chine specifies its replacement; once this has happened, the replacement can
begin processing the next message. This is illustrated in Figure 2.4, where ac-
tor X has processed the nth message in its queue, and has specified a behaviour
for the processing of message n + 1.

The principal differences between the Actor model and more conventional
object-oriented models are:

• Message-sending is asynchronous.

• The behaviour of an object can change from event to event. There is
no notion of actors belonging to classes, and having fixed behaviours. 2
Consequently, inheritance is not a primitive concept in actor systems.

2The semantics defined by Agha, however, bind behaviours to behaviour identifiers statically,

• The state of an actor is fixed whilst it is processing a message. A state
change occurs when a new behaviour is defined for the actor. The new
behaviour is only related to the old behaviour inasmuch as the acquain-
tance list of the new behaviour is specified by the old.

2.5.1 The Semantics of Actor Systems
The semantics of actor systems given by Agha in [Agh86] is in two parts:
first, an initial configuration is defined for a particular actor program; second,
a transition relation between configurations is defined.

Actor programs may be composed by identifying the receptionists of one
program (i.e., the actors thatmay receive communications from external sources)
with the external actors of another (i.e., actors that are not part of the program
but may be sent messages). An important property of actor semantics is that
the meaning of the composition of two actor systems is the same as the com-
position of the meanings of the parts.

The configuration of an actor system is a pair (l, T), where l defines the
behaviour of every actor in the configuration, and T is the set of messages that
have not been processed yet (known as a tasks). The first element of the pair
is known as the local states function, and is a map from actor names (known
as mail addresses) to behaviours: l ∈ M m B. As in the second semantic
definition of POOL in [AdBKR86] (see §2.4), a mail address is a sequence of
natural numbers to allow concurrent allocation of new mail addresses.

A task is a triple of the form (t, m, k), where t ∈ Tag is a unique tag that
distinguishes all tasks, m ∈ M is the destination mail address of the message,
and k ∈ M∗ is the list of parameters in the message:

Task = Tag ×M ×M∗.

A behaviour is a function of the form

B = Task → Task-set × Actor-set × B.
When an actor withmail addressm and behaviour β processes a task (t, m, k),

then β(t, m, k) = (τ , A, β′) is a triple of new tasks τ , new actors A, and a new

so that the complete behaviour of an actor can be said to be completely determined when it is
created.

behaviour β′, respectively.
A transition relation between configurations c1 and c2 can then be defined as

follows: if τ ∈ tasks(c1), τ = (t, m, k), and states(c1)(m) = β where β(t, m, k) =
(T, A, β′), then

tasks(c2) = tasks(c1) − τ ∪ T, and
states(c2) = states(c1) ∪ A † m β′ .

Whilst the Actormodel is an admittedly elegantmodel of concurrent object-
oriented computation, it is not suited for our purposes. The aim of this thesis
is to provide a model for existing features of object-oriented languages, and
there is a mismatch between the features of a language like Smalltalk and the
Actor model. More specifically, the differences in message-sending semantics
and the lack of mutable local state within an object whilst processing a mes-
sage make the Actor model unsuitable as a general model of object-oriented
languages.

In the next chapter a new model of object-oriented computationwill be pre-
sented that is more suited to the description of the desired language features.

Chapter 3

A Model of Object-Oriented
Systems

The creative mind plays with the objects it loves.

Carl Gustav Jung

This chapter describes a simple model of object-oriented languages. As
mentioned in the introduction, this model is based on a sequential object-
oriented language, and the semantics of the language are defined denotation-
ally.

The main concepts that are introduced formally are:

• objects, and object identity,

• internal state of objects (instance variables), and primitiveobjects (namely,
those without mutable internal state),

• classes,

25

• messages and methods, with dynamic binding of messages to methods,
and

• prototypes and delegation.

The chapter opens by investigating the semantic domains underlying object-
oriented languages; a comparison of the domain of object stores and conven-
tional stores illustrates the essential difference between object-oriented and
conventional languages. After that the abstract syntax of the minimal object-
oriented language is given, and its semantics defined. Then follows a discus-
sion of primitive objects and classes, and the chapter closes by modifying the
language and its semantics to be prototype-based, rather than class-based.

An index to the functions and types defined in this and succeeding chapters
can be found in Appendix D.

3.1 Objects
Central to the semantics of object-oriented languages is the question, “What
is an object?” Clearly, objects are used as the values of expressions in object-
oriented languages, but what distinguishes an object from a value in a conven-
tional language?

A fundamental concept in object-oriented programming is the idea of ob-
ject identity [KC86]. Simply put, an object’s identity is the property that dis-
tinguishes it from all other objects. Many objects with identical internal states
may have different identities; however two objects with the same identity are
the same object.

In general, the existence of an object is independent of all other objects. An
object may interact with others, and its creation is usually brought about by an-
other object, but it is a first-class citizen and its existence cannot be terminated
by another object.

These two ideas, of identity and first-class citizenship, are reflected in the
principal semantic domain in use in this thesis, namely Object memory. An
Object memory is a map from object identifiers to objects:

Object memory = Oop m Object

Object identifiers are named Oops for historical reasons.1
The domain Oop can be any set of distinct values; no assumption about

ordering within the set is made. The only operator that need be defined on
Oops is equality. This is in contrast with the object identifiers used in the
POOL and actor semantics, which are sequences of natural numbers. In those
models, the concurrent creation of objects requires some scheme for allocating
unique identifiers. To this end, each actor or POOL object maintains an internal
count of how many objects it has created. When an object with identifier α
creates its nth object, the new object is assigned the identifier α [n]. The
POOL and actor models assume that an object cannot change its identity after
it has been created.

3.2 Internal States
Oops identify objects; additionally, objects may have internal states. In the
model presented here, every object is an instance of a class (see §3.12 for an
alternative view):

Object :: Class : Class name
Body : Object body

Objects can either be instances of user-defined classes, or primitive ob-
jects.

Object body = Plain object∪ Primitive object

A Plain object contains all the mutable state of an object, stored as values
of instance variables. Every instance variable can potentially refer to any object
in the Object memory:

Plain object = Id m Oop

Expanding the various definitions, anObject memory looks something like
this:

1OOP is the acronym used in Smalltalk circles for ‘object pointer’. More accurately, it stands
for Ordinary Object Pointer, namely pointers to objects that have storage allocated to them. This
means that OOPs cannot refer to integers, for example, but in this thesis the domain ofOops refers
to all objects. See §3.10 for more on this subject.

Object memory = Oop m (… × Id m Oop)

This is the central structure found in almost all object-oriented systems:
a flat space of objects, each with their own unique identity and internal, pri-
vate address space. The identifiers that comprise that address space, i.e., the
instance variable names, are only in scope within methods associated with the
object (usually by being defined within the object’s class).

Contrast this with the semantic domains associated with a conventional
programming language: the environment is a mapping from identifiers to de-
notable values, and the domain of denotable values usually includes locations;
the store is a mapping from locations to values. Obviously, these two do-
mains differ in significant ways. Explaining the structure of these domains can
highlight the key difference between conventional programming languages and
object-oriented languages.

3.3 The Nature of Object-Oriented Languages
Let us first consider the domain underlying the simplest kind of imperative
language, with only global identifiers, and no procedure or function facilities. 2
The meaning of a statement in such a language is a function from stores to
stores, where a store is a mapping from identifiers to values:

MStat = Stat→ Store → Store

Store = Id m Val

No environment is required. Clearly, a language based on the Store do-
main is inadequate for the construction of large software systems: it has no
abstraction mechanism. The abstraction mechanism should package up en-
tities, encapsulating them so that the internal details are hidden. Ideally, the
same mechanism should support both data abstraction (i.e., support for abstract
data types) and control abstraction.

ALGOL-like languages approach this problem in three steps: First, sepa-
rate stores are encapsulated within blocks. Identifiers declared within a block

2The early versions of BASIC are examples of such a language.

are invisible outside the block. The only way to create multiple instances of a
block is to name it, i.e., create a procedure, and use recursion. However, be-
cause block activations are in stack-order, and variables created inside a block
disappear when the block exits, blocks cannot provide a data abstraction fa-
cility. The model of the store is the same as before, except that a “new” store
is created when a block is entered, and discarded when it exits. Alternatively,
if recursion is not provided by the language (e.g., FORTRAN), then a global
store (with identifiers renamed to avoid name clashes between blocks) is an
adequate model.

The second step taken by the ALGOL-like languages is to provide a com-
munication mechanism between blocks (in addition to parameter passing),
namely shared variables. Any block can access the variables of its enclos-
ing blocks. A more restricted form of this sharing is parameter passing “by
reference.” Locations are introduced into the domain of stores, and environ-
ments facilitate sharing. At any point in the text of a program, the environment
binds identifiers to locations, and the store maps locations to values:

Env = Id m Loc

Store = Loc m Val

MStat = Stat→ Env → Store → Store

Finally, as the use of global variables can lead to bad programming habits
and obscure bugs, and so that long-term storage can be allocated at run-time,
the idea of a heap is introduced. This enables a block to create a new location
in the store, which outlives the block. Access to the storage is enabled by
making locations into values called pointers.

Val = Loc∪…

Most conventional programming languages include one or more of these
features. As has been noted by programmers in recent years, the use of shared
variables, call-by-reference, and pointers can lead to programs that are not
modular [Don77]. Several features have been proposed to ameliorate this prob-
lem, such as modules and packages [Wir83, Uni80]. These providemodularity,
but not full support for abstract data types, as multiple instances of a module
cannot be created at run-time.

The design of object-oriented languages deviates from that approach at
the outset. The use of shared variables and aliasing is outlawed. Rather than
insist that allocation of name-spaces takes place in stack-order, each name-
space, termed an object, has an independent existence. Structurally, objects
are identical to the original store:

Object = Id m Val

New objects, which may be instances of abstract data types, can be created
at any time, and exist indefinitely. Object identifiers, Oops, are used as internal
names to refer to objects.

Object memory = Oop m Object

Because objects must communicate with each other, and therefore must
reference each other, Oops can also be values:

Val = Oop∪…

If primitive values (such as integers) are also modelled by objects, then the
only kind of value required is an Oop, but then objects must be of two kinds,
primitive or non-primitive:

Val = Oop

Object = Primitive object ∪ Id m Val

As with ALGOL-like languages without sharing, the code associated with
a name-space has access to the identifiers of that name-space, and no others. In
the ALGOL model, the variables of a block only exist when a block is active.
In an object-oriented language, the variables exist indefinitely, so different op-
erations can be invoked on them. Each of these operations is termed a method.

The object-based store just defined strongly resembles the Object memory
defined earlier (§3.1). This structure can also be found in the object store of the
POOL definition (Σ = (AObj m IVar m AObj) ×…, [AdBKR86], p. 199),
and is present in a slightly different form in the actor semantics. Actors are
not instances of classes, so their “instance variables” (the acquaintance list)
can change in structure from event to event, but not during the processing of a
singlemessage. Accordingly, actors systems are mappings frommail addresses

(the object identifiers of an actor system) to behaviours, where a behaviour is
a function parameterised by an acquaintance list (see §2.5.1).

So important is this structure in an object-oriented system, that one is
tempted to say that its presence is a necessary and sufficient condition for a
language to be called “object-oriented.” Moreover, because this structure can
be simulated using conventional data structures, object-oriented programming
can be “simulated” in any conventional language by suitable self-discipline by
the programmer [Cox86].

3.4 Object-Oriented Principles
The previous section provided a rationale for the development of object-oriented
languages.3 One thing is clear: that the principal aim of the object-oriented
style is to provide a single mechanism that facilitates abstraction and encapsu-
lation of both data and control. To reinforce this idea, this section introduces
two principles that all languages that seek to call themselves object-oriented
should uphold. These principles are modelled after Tennent’s Principles of
Abstraction, Correspondence and Qualification [Ten77, Ten81].

The concepts of identity and private internal states are enshrined in the
Principle of Object Identity and the Principle of Object Encapsulation:

The Principle of Object Identity Every object has a unique identity, which
cannot change without the object’s cooperation.

The Principle of Object Encapsulation The internal state of an object can
only be accessed or modified by the execution of a method associated
with the object, in response to a message sent to that object.

Note that the structure ofObject memory reflects these principles by using
Oops as indicators of identity, and independent name-spaces within objects.
Object-oriented languages can support these principles by ensuring that the
internal identifiers of only one object are in scope at any place in a program.

3It is, however, doubtful that all the various aspects were considered together before their
development. As usual, the evolution of the style developed in part by design, and in part by
chance.

3.5 Abstract Syntax
This section defines the abstract syntax of a language invented to explain the
essentials of object-oriented programming. Later sections define its semantics,
and following chapters extend the language to incorporate inheritance and con-
trol features.

The language presented in this section is a simplification of that described
in [Wol87]. As an initial draft of this material was being prepared, the defi-
nition of the SPOOL language (sequential version of POOL [Ame86b]) was
encountered by the author. The SPOOL language and semantics are remark-
ably similar to the language presented in this chapter, the principal differences
being:

• SPOOL is statically typed (where types are classes), and

• sends to self are disallowed (as in POOL)

The reader unfamiliar with the notation used here may find the SPOOL defi-
nition useful.

3.5.1 Classes
Every object is an instance of a class. Classes organise objects with common
behaviour into groups: the class defines that which is common to all objects
in the class; the private states of objects reflect the differences.

To define behaviour, a class defines the messages that its instances will re-
spond to, and how they will respond. It does this by associating a method with
every message that its instances respond to. Messages have names (termed
selectors), and possibly some parameters. Additionally, a class defines the
structure of its instances by enumerating the names of their instance variables.
Thus one component of a class is a Id-set. An invariant of the Object memory
is that the structure of every object is consistent with its class. The abstract
syntax of a class is:

Class body :: Instvars : Id-set
Methods : Selector m

Method body∪ Primitive method

Note that associated with every selector is either a user-defined method, or
a primitive method that cannot be expressed within the language. Primitive
methods are used to provide facilities such as basic arithmetic, and will be
described more fully in §3.9.

Every class is named, and a set of named classes comprises a program:

Program = Class map

Class map = Class name m Class body

Note that one of these “programs” does not, by itself, compute anything.
It merely provides a context for the evaluation of an expression. Given a pro-
gram p, and an expression e (with no free variables) to be evaluated in the
context of p, the meaning of e is given by the meaning function MExpression
(defined later), with the meaning of p (as defined by MProgram) as part of
its “environment.” The resulting meaning is a function that transforms an
Object memory to a new Object memory.

3.5.2 Methods, Messages and Expressions
The syntax of methods given here is loosely based on that of Smalltalk. Each
method can take some arguments; declare variables that are local to themethod,
and whose lifetime is that of a method invocation (these are known as tempo-
rary variables, or sometimes just temporaries); execute an expression.4 (Pa-
rameters and temporaries are known collectively as local identifiers, or just
locals.) The value returned by the method is the value of the expression.

Method body :: Params : Ulist(Id)
Temps : Id-set
Expr : Expression

The constructor Ulist(X) is used to model a sequence of values from the
domain X, that has no duplicates. It is defined thus:

Ulist(X) = X∗

4This is not quite like Smalltalk in that the body of amethod is an expression, and an expression
can be the sequential composition of a list of expressions. In Smalltalk, sequential composition is
only allowed at the outermost level.

where

inv-Ulist(X)(l) cardrng l = carddom l

The invariant asserts that all elements of Ulistmust have the same number
of different elements in their range as in their domain, i.e., that the number of
different elements is the same as the length of the sequence.

Expressions can be composed sequentially into Expression lists, and come
in five other basic flavours:

Expression list :: Expression∗

Expression = Expression list∪ Assignment∪ Object name
∪Message ∪ New object∪ Literal object

In an Assignment, the value of an expression can be assigned to a tempo-
rary or an instance variable of the object that has received the message being
processed by the current method5 (AVar id is the domain of assignable identi-
fiers).

Assignment :: LHS : AVar id
RHS : Expression

AVar id = Temp id∪ Inst var id

Arg id :: Id

Temp id :: Id

Inst var id :: Id
(In a concrete syntax, identifiers of instance variables, temporaries and ar-

guments are likely to come from the same domain. However, it is assumed
that any applied occurrence of an identifier can always be resolved statically
to determine which kind of variable is being used.)

AnObject name is either a local identifier, an instance variable, or a “pseudo-
variable” standing for the Oop of the receiver, usually known as self (also

5This object is usually known as the “receiver.”

known as this in Simula and C++, and current in Eiffel [BDMN73, Str86,
Mey87]).

Object name = Var id∪ SELF

Var id = Arg id∪ Temp id∪ Inst var id

A Message contains an expression that evaluates to the intended receiver
of the message, the selector of the message to be sent, and a list of expressions
(possibly empty) that are the arguments of the message.

Message :: Rcvr : Expression
Sel : Selector

Args : Expression∗

New objects are created by evaluating a New object expression; it is pa-
rameterised by the name of the class of the new object.

New object :: Class : Class name
(Smalltalk aficionados will know that there is no special syntactic form in

Smalltalk for new-expressions; this is elaborated upon in §3.11.)
For the moment, the only kind of literal objects are integers. Other possible

choices are discussed in §3.10 and Chapter 5.

Literal object = Int literal

Int literal ::
The abstract syntax of the simple language is complete. Now the associated

semantic domains and meaning functions will be defined. Context conditions
are defined in Chapter 4.

3.6 Semantic Domains
The principal semantic domain, Object memory, has already been described.
To complete the definition of Object memory, all that is required is to choose
the domain of primitive objects. As integers are the only type of literal objects
in the language, they are also the only type of primitive object:

Primitive object =

Several auxiliary functions will be found useful:

class :Oop × Object memory → Class name
class(oop,σ) Class(σ (oop))

pre oop ∈ domσ

body :Oop ×Object memory → Object body
body(oop,σ) Body(σ (oop))

pre oop ∈ domσ

inst var : Id ×Oop × Object memory → Oop
inst var(iv, oop,σ) body(oop,σ)(iv)

pre pre-body(oop,σ)
∧ body(oop,σ) ∈ Plain object
∧ iv ∈ dombody(oop,σ)

update inst var : Id ×Oop × Oop ×Object memory →
Object memory

update inst var(inst var, oop, value,σ)
σ † oop µ(σ (oop), Body

body(oop,σ) † inst var value)

pre pre-body(oop,σ) ∧ body(oop,σ) ∈ Plain object
The denotation of a class is a function, which, given an instance of that

class, a message, and an object memory, executes the method associated with
the message, returning a (possibly updated) object memory, and a resultOop.

Class den = Selector m Method den

Method den = Oop × (Oop∗) × Object memory →
Oop ×Object memory

The first argument of a Method den is the Oop of the receiver; the second
is a list of the Oops of the arguments of the method.

The denotation of a Program is composed of the denotations of its con-
stituent classes.

Program den = Class name m Class den

MProgram :Program → Program den
MProgram p

let pd =
c MClass body p(c) mk-SEnv(all instvars(p), pd)

| c ∈ domp in
pd

all instvars :Program → Class name m Id-set
all instvars(p) c Instvars(p(c)) | c ∈ domp

To define the meaning of methods, a fixed point definition is required. This
could also be written as

f ix λpd ⋅ c MClass body p(c) mk-SEnv(all instvars(p), pd)
| c ∈ domp .

For such a fixed point to be defined, the functional that is its argument
must be continuous, and its domain and co-domain the same pointed complete
partial ordering (cpo) [Sto77]. That the domain Program den is a pointed
cpo follows from its construction, using primitive domains that are pointed
cpos and constructors that build pointed cpos given arguments that are pointed
cpos. Continuity follows by examining the definition of MClass body, and
its auxiliary functions (see rest of this chapter). The fixed-point construction
proceeds by taking an approximation to the meaning of the program, pd, and
constructing a better approximation by evaluating the meaning function for
every class in the program.

TheMProgram function passes a static environment toMClass body. This
records the names of the instance variables associated with each class, and the
denotation of the rest of the program.

SEnv :: Instvars : Class name m Id-set
PD : Program den

The denotation of a class is composed of the denotations of its constituent
methods:6

MClass body :Class body → SEnv → Class den
MClass body mk-Class body(, meths) ρ

sel MMethod meths(sel) ρ | sel ∈ dommeths

MMethod : (Method body∪ Primitive method)→
SEnv → Method den

MMethod m ρ if m ∈ Primitive method
then m
elseMMethod body m ρ

As is apparent from the definition ofMMethod, a Primitive method is sim-
ply a method denotation:

Primitive method = Method den

Some primitive methods are defined in §3.9.
During the execution of a method, a dynamic environment7 records the

bindings of parameters to arguments and the values of temporaries, and the
current receiver. The auxiliary function update temp will prove useful later:

DEnv :: Rcvr : Oop
Params : Id m Oop
Temps : Id m Oop

6The use of an underscore in the Class body constructor indicates that the value of that par-
ticular field is not used in this function. Similarly, arguments to functions which are not used are
indicated by an underscore.

7The use of the terms “static environment”and “dynamicenvironment”differs from that in, say,
[BJ82], where a static environment is a structure used during the evaluation of context conditions,
and a dynamic environment records, e.g., the binding of identifiers to locations. The dynamic
environment used here could be part of the store, but the separation of the state local to a method
from the global state is a more natural model of object-oriented computation.

update temp : Id × Oop ×DEnv → DEnv
update temp(id, value, δ)

µ(δ , Temps Temps(δ) † id value)

The execution of a method consists of creating a dynamic environment,
binding the formal parameters of the method to the actual parameters, initialis-
ing temporaries (Smalltalk always initialises temporaries to refer to the special
object, nil, with Oop NILOOP), and executing the body of the method in the
new environment.8

MMethod body :Method body→ SEnv → Method den
MMethod body mk-Method body(params, temps, expr) ρ

λrcvr, args,σ ⋅
let bindings = bind args(params, args) in
let δ = mk-DEnv(rcvr, bindings, initialise(temps)) in
let (result, δ ′,σ′) = MExpression expr ρδσ in
(result,σ′)

bind args :Ulist(Id) × Oop ∗ → Id m Oop
bind args(f ormals, actuals)

f ormals(i) actuals(i) | i ∈ dom f ormals

pre len f ormals = lenactuals

initialise : Id-set→ Id m Oop
initialise(vars) id NILOOP | id ∈ vars

8The preconditions given for some of the functions are only satisfied when the meaning func-
tions are applied to programs that satisfy certain well-formedness conditions; these are defined in
Chapter 4.

3.7 The Meaning Function for Expressions
Within the execution of a method, assignments to temporary variables can take
place, so the dynamic environment is also a result of an expression evaluation:

MExpression :Expression → SEnv →
DEnv → Object memory →

Oop ×DEnv ×Object memory
MExpression mk-Expression list(exprs) ρδσ

let (oop, δ ′,σ′) = MExpression hdexprs ρδσ in
if lenexprs = 1 then (oop, δ ′,σ′)
elseMExpression mk-Expression list(tlexprs) ρδ ′σ ′

The remaining definitions show how the other various kinds of expressions
are evaluated.

The semantics of assignment are straightforward: either a temporary or an
instance variable of the current receiver is updated.

MExpression mk-Assignment(id, rhs) ρδσ
let (result, δ ′,σ′) = MExpression rhs ρδσ in
cases id of
mk-Temp id(t) → (result, update temp(t, result, δ ′),σ′)
mk-Inst var id(iv)→ result, δ ′,

update inst var(iv, Rcvr(δ), result,σ′)
end

References to objects are equally straightforward:

MExpression mk-Arg id(id) ρδσ (Params(δ)(id), δ ,σ)

MExpression mk-Temp id(id) ρδσ (Temps(δ)(id), δ ,σ)

MExpression mk-Inst var id(id) ρδσ
(inst var(id, Rcvr(δ),σ), δ ,σ)

MExpression SELF ρδσ (Rcvr(δ), δ ,σ)

Before sending a message, the receiver and argument expressions of the
message must be evaluated, to determine the receiver and argument objects.
In this simple language, as in Smalltalk, arguments are evaluated left-to-right.

MExpression mk-Message(rcvr, sel, arglist) ρδσ
let (rcvr oop, δ ′,σ′) = MExpression rcvr ρδσ in
let (actuals, δ ′′,σ′′) = MExpression list arglist ρδ ′σ ′ in
let (result,σ′′′) = perf orm(sel, PD(ρ), rcvr oop, actuals,σ′′) in
(result, δ ′′,σ′′′)

The following function evaluates a list of expressions, accumulating the
results of each expression into a list of Oops.

MExpression list :Expression∗ → SEnv →
DEnv → Object memory →

Oop∗ × DEnv × Object memory
MExpression list el ρδσ

if el = []
then ([], δ ,σ)
else let (val, δ ′,σ′) = MExpression hdel ρδσ in

let (val list, δ ′′,σ′′) = MExpression list tl el ρδ ′σ ′ in
([val] val list, δ ′′,σ′′)

The perf orm function lies at the heart of the message-passing semantics.
Note that the method chosen in response to a message is determined by the
class of the receiver, which in general cannot be determined statically.

perf orm : Selector × Program den
×Oop × Oop∗ × Object memory →

Oop ×Object memory
perf orm(sel, pd, rcvr, args,σ)

let class = class(rcvr,σ) in
if sel ∈ selectors(class, pd)
then method(sel, class, pd)(rcvr, args,σ)
else message not understood(sel, pd, class, rcvr, args,σ)

selectors :Class name × Program den→ Selector-set
selectors(class, pd) dompd(class)

method :Selector × Class name × Program den→ Method den
method(sel, class, pd) pd(class)(sel)

When an object does not understand a message (i.e., when its class does
not define a response), an error must be signalled, perhaps by stopping the
program. This behaviour is encapsulated within the message not understood
function. In Smalltalk, for example, messages that are not understood are not
classed as “errors” in the normal sense, but cause a special message, doesNo-
tUnderstand:, to be sent to the receiver. If thismessage is in turn not understood,
the outcome is undefined. Formalising this behaviour requires a definition of
the representation of messages as objects, and a capability within the seman-
tics for creating such objects. Although straightforward, this is not of concern
here.

3.8 Creating Objects
Evaluating a new-expression creates a new object, which, by definition, is
given a new identity. Because only one restriction has been placed on ob-
ject identities, namely that equality be defined, any identity not in use can be

assigned to the new object. This is manifest in the definition of create: a spec-
ification for a function is given, rather than an explicit function definition. 9

MExpression mk-New object(class) ρδσ
let new obj = mk-Object(class,

initialise(Instvars(ρ)(class))) in
let (new oop,σ′) = create(new obj,σ) in
(new oop, δ ,σ′)

create (obj:Object) new oop:Oop
ext wr σ : Object memory
post new oop ∉ dom σ ∧ σ = σ ∪ new oop obj

The signature of the create function is Object × Object memory → Oop ×
Object memory.

A literal value denotes an immutable object. Since an equivalent object
may not exist in the memory, one may have to be created. However, if one
does exist, there is no sense in insisting that it be found, as two equal immutable
objects are indistinguishable. Thus the meaning function for integer literals can
return an existing equivalent object if there is one present in the store, or make
a new one.

MExpression mk-Int literal(int) ρδσ
let (oop,σ′) = f ind or make immutable(int, Integer,σ) in
(oop, δ ,σ′)

f ind or make immutable:
Primitive object × Class name ×Object memory →

Oop ×Object memory

9Strictly, this non-determinacyposes someproblems in the claim that denotationsare functions;
see [BJ82]. The proof that these problems have been resolved has been omitted.

f ind or make immutable (value:Primitive object,
class:Class name) obj:Oop

ext wr σ : Object memory
post σ (obj) = mk-Object(class, value)∧ (σ = σ ∨ obj σ = σ)

Most Smalltalk implementations take advantage of this fact by encoding
the values of a small range of integers (usually related to the machine word
size) into the range of object pointers, by using tags.

The ability of an object-oriented language to create objects at run-time has
important consequences for the semantics and implementation of the language.
Consider, for example, the effect of a new-expression that does not assign its
result to a variable, nor return it as the result of a method. A new object will
have been created in the object memory, and assigned an Oop, but this Oop
will not appear anywhere else in the memory, and so be inaccessible. From an
operational point of view, such an expression has no effect on the meaning of a
program: the result is the same as if the expression had not been evaluated, and
the store is not detectably different. However, the meanings of two programs
as defined by the semantics, one with and one without such an expression,
are different. This is because the resulting object memories are different: one
contains an object that is not present in the other. From the implementation
viewpoint, the redundant object is garbage, and the resources that are allocated
to it (an identity, and possibly some storage) must be reclaimed by garbage
collection.

The semantics given in this section do not eliminate garbage from the state.
Although this could be done, it would complicate the definition unnecessarily.
A better approach is to define a retrieve function that filters out garbage from
the state [Wol86], or define an isomorphic equality operator between object
memories that ignores garbage [Mas86].

3.9 Primitive Methods
Primitive methods provide functionality that cannot be expressed within the
language. For example, primitives are required to perform arithmetic on inte-
gers.

The conventional approach to including primitives is to provide special
syntactic forms for the primitives (e.g., the arithmetic operators in Pascal), and
meaning functions for the special forms. The approach taken in this semantics,
as in Smalltalk, is different: primitive classes (such as the class of integers) are
defined, and primitive methods associated with messages to instances of those
classes. For example, the + message is associated with an addition primitive
in the class of integers; it could also be associated with a user-defined method
for concatenation in the class of strings. Defining primitives this way has the
advantage that a new capability can be added to the language without changing
any existing syntactic or semantic definitions. In this section, several primitives
are defined by way of example. More on this subject occurs in the section on
primitive classes, §3.10, §3.11 and Chapter 5.

The definition of arithmetic and relational primitives on integers is straight-
forward. The only noteworthypoint is what happens when the argument passed
to the addition primitive is not an integer (we can be sure that the receiver is
an integer by insisting that the primitive is only associated with a selector in
the class of integers—this useful property of receivers is used in other primi-
tives, to follow). Plainly, one option is to define this to be an error, and halt
the program’s execution. However, as was mentioned in the introduction, this
is not a satisfactory solution in a persistent system. The Smalltalk approach is
to associate a method, written in Smalltalk, with every primitive method. If
the pre-conditions of the primitive are not met, the primitive is deemed to have
failed, and the non-primitive method is executed. A failing primitive must not
cause any change to the object memory or environment. The non-primitive
method will typically display an error on the screen, but may instead perform
some recovery action. For example, the integer primitives are only defined on
a subrange of the integers compatible with the machine’s word size; the task
of the non-primitive method is to deal with overflow.

Rather than complicate the model by describing a primitive failure, it will
be assumed that some suitable action is taken; other suitable static exception
handling techniques could be used [Bla83, Cot84, Cri84]. In the integer addi-
tion primitive, this is the task of the plus error function. 10

10The use of a sequence constructor in the argument list indicates that there must be exactly one
argument to the method—this can be guaranteed by the context conditions, described in Chapter 4.

plus primitive :Primitive method
plus primitive

λrcvr oop, [arg oop],σ ⋅
let addend = body(rcvr oop,σ) in
let augend = body(arg oop,σ) in
if augend ∈
then f ind or make immutable(addend+augend, Integer,σ)
else plus error(rcvr oop, arg oop,σ)

One thing that plus error could do is return a special Oop that could not be
a valid answer, e.g., NILOOP. Then the primitive could be encapsulated within
a general addition method, and suitable action taken if the result was not an
integer.

3.9.1 Primitive Equivalence
The equivalence primitive compares theOops of its receiver and argument. No
extension to the model is required to support this primitive, as equality between
Oops must be defined anyhow. However, care must be taken in its definition,
because arbitrary Oops can be chosen when creating primitive objects.

When creating an integer object, f ind or make immutable has the choice
of making a new object or returning the Oop of an existing, equivalent object.
Thus it would seem natural tomake a special case for the comparison of integer
objects: rather than comparing Oops, the values are compared. The same
argument can be extended to all immutable objects.11

A definition of the equivalence primitive is:

11But see §5.4 for a twist in the story.

equivalence primitive :Primitive method
equivalence primitive

λrcvr oop, [arg oop],σ ⋅
let r body = body(rcvr oop,σ) in
let a body = body(arg oop,σ) in
if (if r body, a body ⊂
then r body = a body
else rcvr oop = arg oop)

then (TRUEOOP,σ)
else (FALSEOOP,σ)

where TRUEOOP and FALSEOOP are the Oops of distinguished objects rep-
resenting truth and falsehood, respectively.

Introduction of the equivalence primitive creates a subtle problem: the ar-
gument of the primitive, if not the same as the receiver, gets no opportunity
to actively participate in the test. Why this might cause problems is illustrated
by the following example. A useful technique in object-oriented programming
is the idea of surrogate objects: a surrogate object shadows another object,
forwarding messages to it automatically, but performing some additional oper-
ation, such as monitoring the message stream. Except for the extra behaviour,
one would like the surrogate to behave exactly like the shadowed object, by
forwarding all messages. However, the equivalence primitive can be used to
see through the deceit: if the receiver of the equivalence test is the shadowed
object, and the argument is the surrogate, the primitive will return false, be-
cause the surrogate was not actively involved in the operation. If the receiver is
the surrogate, and the argument is the shadow, then the surrogate will forward
the message to the shadow, and true will be returned.

A possible way out of this is to define equivalence in terms of a lower-level
concept: a primitive that maps the Oop of its receiver into a unique integer.
Then the equivalence method can send a message to both objects asking for
integers corresponding to their Oops, and compare the integers. A surrogate
can forward the message to its shadow, and can never be detected.

This primitive can be formally described as follows:

oopOf primitive :Primitive method
oopOf primitive

λrcvr oop, ,σ ⋅
f ind or make immutable(oop of (rcvr oop), Integer,σ)

where oop of is any bijection from Oops to integers.
This example highlights a more general problem: that of non-unary prim-

itives that take arguments of any class. These primitives will always violate
the Principle of Object Encapsulation by inspecting the internal state of the
argument.

3.9.2 Enumerating Objects by Class
Smalltalk provides two primitives that facilitate enumeration of all the objects
in a class. One finds the “first” instance of that class, and the other, given an
instance, finds the “next” instance of the class. Together, these can be used to
define an iterator that enumerates all instances of a class.

To accommodate these primitives, the model has to be extended so that an
ordering is defined on the Oops in any Object memory. This in itself is not a
problem, but a more serious problem is that enumeration may reincarnate “dead
objects” that would otherwise have been garbage collected. Some Smalltalk
systems actually do this [CWB86], but it is obviously undesirable. One could
circumvent the problem by insisting that garbage collection took place when
either of these primitives was invoked, but the cost of using them would be
prohibitive, as the time taken to garbage collect is proportional to the number
of objects in the memory.

Primitive objects also complicate the definition of enumeration. If one can-
not distinguish between two integer objects with equal values (because they
behave identically, even to the point of being considered equivalent [§3.9.1]),
what should be returned when enumerating instances of primitive classes?
Should all the integers objects in the memory be returned, even though there
may be some with the same value? Clearly, there is no simple way out.

Furthermore, because enumeration plays havoc with virtual memory sys-
tems, it is likely in the future to be seen as too expensive to be implemented
as a primitive. In the author’s opinion, as object-oriented systems become dis-
tributed, there will no place for such a feature, as it will be computationally

intractable. Furthermore, enumeration is somehow “un-object-oriented”: enu-
meration violates the principle that an object can only increase its knowledge
about its world by sending or receiving messages.

3.9.3 Changing the Identity of Objects
In [KC86], Khoshafian and Copeland argue for strong support for object iden-
titywithin object-oriented languages, and describe several operators on identity
that they deem to be desirable in a language. Together with the equivalence
primitive described in §3.9.1, they mention themerge primitive, which merges
the identities of two objects into one. Merging an object with Oop p 1 into
an object with Oop p2 requires changing all references to p1 to refer to p2.12
Clearly, this is in violation of the Principle of Object Encapsulation. Moreover,
it is difficult to see how this could be implemented without one of the objects
concerned being merged without being sent a message, thereby violating the
Principle of Object Identity. This is another illustration of the problem caused
by binary primitives.

The become primitive of Smalltalk has similar problems. The idea of be-
come is that the identities of two objects are exchanged. In exchanging the
identities of p1 and p2, the object memory σ becomes

σ † p1 σ (p2), p2 σ (p1)

Again, this violates the Principle of Object Identity, as one of the objects
has no say in the matter. Some Smalltalk implementations have great trouble
supporting this primitive, and their implementors have chosen to abandon it in
the long term [SUH86, LGFT86].13

The merge and become primitives are examples of a more general prob-
lem concerning the change of identity of objects in an object-oriented system.
Simple reasoning shows that changing an object’s identity will always violate

12Or vice versa, or alternatively a new Oop could be used to refer to the merged object, and all
occurrences of both p 1 and p2 changed to the new Oop.
13However, it is fair to say that their reasons are more due to implementation problems than

concerns for semantic issues. It can be argued, however, that the implementation problems arise
from the semantic problems.

either the Principle of Object Encapsulation, of the Principle of Object Iden-
tity, or both. If an object’s identity is to change, it must assume either the
identity of an existing object, violating the Principle of Object Identity, or a
new identity. If it assumes a new identity, existing objects that reference that
object must either now refer to some other object (dangling references are not
allowed), which violates the Principle of Object Encapsulation, or refer to the
same object, in which case the Oop may have changed but it does not have a
detectably different identity (i.e., the new store is isomorphic to the old one).
This leads to:

The (Strong) Principle of Object Identity Every object has a unique iden-
tity, which cannot change.

Clearly, an object’s identity is connected with its Oop, but it is not the same
thing. If a change in Oop leaves a new store isomorphic to the old one, the
identity of the object has not changed.

3.10 Primitive Classes
Just as primitive methods are required to supply functionality that cannot be
expressed otherwise in the language, primitive objects are required to supply
state that cannot be modelled by user-defined objects (or can only be modelled
inefficiently). Primitive methods are frequently related to primitive objects,
but as the last section showed, need not be.

To keep the model uniform, primitive objects are instances of primitive
classes, which differ from conventional classes in that they must be present in
all programs (e.g., as part of a standard environment or prelude), and cannot
be subclassed or used in new-expressions.

Instances of primitive classes are usually created by literal expressions in
the program, or by primitive methods invoked on other primitive objects. An
example of the former is the literal expression “3”, which causes an object
with Body = 3 to appear in the store if one is not present. Alternatively, the
object representing 3 can be created by sending the message “+” to an object
representing 1, with argument 2 (assuming the primitive method for integer
addition is bound to +).

Primitive objects such as those representing integers have no mutable state.
Why then represent them as objects, rather than extending the domain of val-
ues? For example, Oops could be restricted so that they only referred to non-
primitive objects:

Value = Oop∪ Primitive object

Object memory = Oop m Object

Object :: Class : Class name
Body : Id m Value

This approach is taken in the definition of POOL [AdBKR86]. The advan-
tage of having primitive objects and classes is that the semantics of message-
sending are the same for all objects, allowing the user to define additional
methods of her own for integers, and making primitive methods appear to the
user the same as all other methods. Other languages that take this approach are
Scheme [RC86] and PostScript [Ado85]. Another reason for having primitive
classes is that there can exist primitive objects with mutable state; see §3.10.4
for an example. All mutable objects require their own identity.

3.10.1 Booleans
Although the definition of the equivalence primitive (§3.9.1) suggested that
every store should contain objects representing truth and falsehood, with pre-
determined Oops, it is not necessary for these objects to be primitive. As in
the Smalltalk system, the true and false objects can be instances of classes that
have conventional definitions. The only requirement is that these classes be
defined in every program that uses boolean objects. Also, a choice should be
made whether there should only be one object for each of true and false, or
whether multiple instances of each are allowed. As boolean objects do not
have mutable state, there is little to distinguish between the cases, but it is
likely that an implementation can gain from having only one instance of each.

The syntax of boolean objects is:

Literal object = …∪ Bool literal

Bool literal ::

and the semantics for single instances is:

MExpression mk-Bool literal(bool) ρδσ
(if bool then TRUEOOP else FALSEOOP, δ ,σ)

Owing to the dynamic binding inherent in message-sending, boolean op-
erations can be defined without resort to primitives. For example, conjunction
can be defined by a method in the class of true that returns its argument, and
a method in the class of false that returns its receiver. If blocks are present in
the language,14 even control structures such as if and while can be defined in
terms of messages and block evaluations. The section on Boolean objects in
[GR83] shows how this can be done. The semantics of blocks are presented in
Chapter 5.

3.10.2 Integers
An alternative to having the entire set of integers available as primitive ob-
jects might be to restrict the set, say to those easily represented by a ma-
chine’s hardware. Smalltalk does this, but by using the notion of primitive
failure (§3.9), user-definable classes can implement arbitrary precision inte-
gers without the user of those classes being aware that multiple classes are
involved. The semantics can easily be changed to have Primitive object =
−maxint,… , maxint , and the primitives suitably redefined.

3.10.3 Symbols
A symbol is a primitive object that represents an identifier of some sort. In
Lisp, symbols are created by quoting, thus: ’foo. Smalltalk also has symbols
as objects.

Symbols can be used in “computed sends”; the selector of the message to
be sent is determined at run-time by evaluating an expression. This is precisely
what the perform primitive does in Smalltalk.

Adding symbols to the syntax of literals gives:

14Smalltalk blocks, not to be confused with blocks in block-structured languages.

Literal object = …∪ Symbol literal

Symbol literal :: Id
To add symbols to the semantic domain of primitive objects is straightfor-

ward:

Symbol = Id

Primitive object = …∪ Symbol

MExpression mk-Symbol literal(s) ρδσ
let (oop,σ′) = f ind or make immutable(s,Symbol,σ) in
(oop, δ ,σ′)

The perform primitive takes a destination object, a symbol representing a
message selector, and a number of arguments, and sends a message containing
the selector and arguments to the destination:

perf orm primitive :Primitive method
perf orm primitive

λrcvr, cons(sel oop, args),σ ⋅
let sel = body(sel oop,σ) in
if sel ∈ Symbol ∧ nargs(sel) = lenargs
then perf orm(sel, pd, rcvr, args,σ)
else perf orm error(sel oop, sel, pd, rcvr, args,σ)

Points to note about perf orm primitive:

• The program denotation, pd, is a free variable of the above definition. It
should be bound to the denotation of the surrounding program.

• The function nargs determines how many arguments are associated with
a selector. In Smalltalk, this can be determined by examining the name
of the selector (see §4.1.1 for a definition of nargs). For example, the
selector foo:bar: always takes two arguments. In languages where se-
lectors do not have this property, a run-time test must ensure that the
number of formal parameters matches the number of actual parameters.

• The perf orm error function encapsulates the behaviour of the system
when either the first argument to the primitive is not a symbol, or the
wrong number of arguments are passed. It is not specified in detail here.

Another potential use of symbols is to eliminate two types of expression
from the language, namely, assignments and references to instance variables.
By defining primitivemethods for these, subclasses can override the primitives,
providing extra behaviour (such as active values and probes [BS83]). To do
this, expressions of the form var← value are replaced with messages of the
form self assign: value to: var, and references to an instance variable var are
replaced with self instVar: var. 15

The primitives are defined like this:

assign primitive :Primitive method
assign primitive

λrcvr, [value, iv oop],σ ⋅
let iv = body(iv oop,σ) in
if iv ∈ dombody(rcvr,σ)
then (value, update inst var(iv, rcvr, value,σ))
else assign error(rcvr, iv oop, value,σ)

ref erence primitive :Primitive method
ref erence primitive

λrcvr, [iv oop],σ ⋅
let iv = body(iv oop,σ) in
if iv ∈ dombody(rcvr,σ)
then (inst var(iv, rcvr,σ),σ)
else ref erence error(rcvr, iv oop, value,σ)

15Obviously, a pre-processing stage would be used to make these transformations; the syntax
seen by the user would be unchanged.

3.10.4 Indexable Objects
Most object-oriented languages provide a facility for creating objects with
numbered rather than named instance variables. Indexed instance variables
are analogous to arrays in conventional languages.

There are two approaches to providing indexed instance variables: either
objects can have both named and indexed instance variables, or different types
of objects have either named or indexed instance variables. In Smalltalk, for
example, a class can be declared to have both named and indexed instance
variables. Incorporating this into the present syntax, a Class body becomes:

Class body :: Instvars : Id-set
Methods : Selector m

Method body∪ Primitive method
Has indexed :

and the definition of Plain object becomes:

Plain object = Id∪ 1
m Oop

(Alternatively, and equivalently, there could be two types of Class body,
say Normal class body and Indexable class body, and two basic types of ob-
ject, with and without indexable fields.)

The static environment has an extra component recording which classes
have indexable objects:

SEnv :: Instvars : Class name m Id-set
PD : Program den

Indexable : Class name-set
A different kind of new-expression would be used to create objects with

indexable fields:

Expression = …∪ New indexable object

New indexable object :: Class : Class name
Size : Expression

MExpression mk-New indexable object(class, size expr) ρδσ
let (sizeoop, δ ′,σ′) = MExpression size expr ρδσ in
if body(sizeoop,σ′) ∈ ∧ class ∈ Indexable(ρ)
then let size = body(sizeoop,σ′) in

let new obj = mk-Object(class,
initialise(Instvars(ρ)(class)∪ 1… size)) in

let (new oop,σ′′) = create(new obj,σ′) in
(new oop, δ ′,σ′′)

else new error(sizeoop, class, δ ′,σ′)

(The domain of initialise is extended to include natural numbers.)
New primitives could be used to access the indexable fields, or to change

the number of indexable fields:16

at primitive :Primitive method
at primitive

λrcvr, [index oop],σ ⋅
let index = body(index oop,σ) in
if index ∈ 1 ∧ in bounds(rcvr, index,σ)
then (body(rcvr,σ)(index),σ)
else bound error(rcvr, index oop,σ)

atput primitive :Primitive method
atput primitive

λrcvr, [index oop, value],σ ⋅
let index = body(index oop,σ) in
if index ∈ 1 ∧ in bounds(rcvr, index,σ)
then (rcvr, update inst var(index, rcvr, value,σ))
else bound error(rcvr, index oop,σ)

16The provision of a grow primitive obviates the need to use the troublesome become primitive
to change the number of indexable fields.

in bounds :Oop × 1 × Object memory →
in bounds(rcvr, index,σ) index ∈ dombody(rcvr,σ)

grow primitive :Primitive Method
grow primitive

λrcvr, [size oop],σ ⋅
let size = body(size oop,σ) in
if size ∈ ∧ body(rcvr,σ) ∈ Plain object
then (rcvr, grow(rcvr, size, σ))
else grow error(rcvr, size oop,σ)

grow :Oop × × Object memory → Object memory
grow(oop, size,σ)

let new body = if size ∈ dombody(oop,σ)
then 1,… , size body(oop,σ)
else i NILOOP | i ∈ 1,… , size

† body(oop,σ)
in

(oop,σ † oop µ(σ (oop), Body new body))

(The domains of inst var and update inst var are extended to include nat-
ural numbers).

The other approach requires a special class, whose instances are objects
with indexed variables:

Indexable object = 1
m Oop

Primitive object = …∪ Indexable object

Special syntax is required to create instances of the Array class:
New indexable object :: Size : Expression

MExpression mk-New indexable object(size expr) ρδσ
let (sizeoop, δ ′,σ′) = MExpression size expr ρδσ in
if body(sizeoop,σ′) ∈
then let size = body(sizeoop,σ′) in

let new obj =
mk-Object(Array, i NILOOP | i ∈ 1… size) in

let (new oop,σ′′) = create(new obj,σ′) in
(new oop, δ ′,σ′′)

else new error(sizeoop, class, δ ′,σ′)

The accessing and updating primitives are similar to those for the former
case.

Although these alternatives seem similar, the next chapter will show that
the latter is preferable.

3.10.5 Other Types of Primitive Objects
In addition to integers, one could consider a subset of the real numbers, namely
the floating point numbers, as primitive objects.

A more unusual candidate for the category of primitive objects is that of
bitmaps: two-dimensional arrays of pixel values. Although bitmaps can be
defined using indexed instance variables, the operations defined on bitmaps
are suitably unusual to warrant not doing so [GS82].

3.11 Classes as Objects
In common with some other languages, Smalltalk has classes as objects that
can be sent messages. There are two reasons for this:

1. Objects are created (and initialised) by sending messages to the appro-
priate class; this obviates the need for a special syntactic category of
new-expressions.

2. Classes have mutable state, which can be altered by programs written in
Smalltalk, enabling both programs and programming environment to be
written in the same language, and to share code.

This section discusses how the formal model is changed to encompass these
ideas.

Tackling point (1) first, classes can be added into the domain of primitive
objects, and a primitive defined to create instances of each class. Because
instances of different classes have different structure, the names of the instance
variables are part of each class object, and no longer need be in the static
environment:

Primitive object = …∪ Class obj

Class obj :: Name : Class name
Instvars : Id-set

Method response : Class den
The primitive method for object creation is this:

new primitive :Primitive method
new primitive

λclass oop, ,σ ⋅
let instvars = Instvars(body(class oop,σ)) in
let new obj = mk-Object(Name(body(class oop,σ)),

initialise(instvars)) in
create(new obj,σ)

where the definition of create is as before. Non-primitive classes would
be instances of a primitive class that provided the new primitive. Primitive
classes would be instances of a different primitive class (because one cannot
create primitive objects using new); this would be an instance of itself. This
is reminiscent of the situation in Smalltalk-76 [Ing78], where all classes were
instances of a single class, which was an instance of itself.

A further step would be to redefine Object so that the Class field referred to
an object in the Object memory, rather than to a class definition (cf. p. 27):

Object :: Class : Oop
Body : Object body

Method lookup proceeds by following the Class link in an object to the
denotation of the object’s class (cf. p. 42):

perf orm : Selector × Oop ×Oop∗ × Object memory →
Oop × Object memory

perf orm(sel, rcvr, args,σ)
let class oop = class(rcvr,σ) in
if sel ∈ selectors(class oop,σ)
then method(sel, class oop,σ)(rcvr, args,σ)
else message not understood(sel, class oop, rcvr, args,σ)

selectors :Oop × Object memory → Selector-set
selectors(class,σ) domMethod response(body(class,σ))

method :Selector × Oop × Object memory → Method den
method(sel, class,σ) Method response(body(class,σ))(sel)

This makes the static environment redundant in the meaning functions;
instead, it is embedded within the class objects in the object memory.

An alternative approach, exemplified by Smalltalk-80, is to have every
class the sole instance of ametaclass (the class of a class is termed a metaclass),
and every metaclass an instance of a “class of metaclasses”, called Metaclass
[GR83]. This has the advantage that every class can have extra methods added
that not only create a new instance (by invoking the primitive), but also perform
class-specific initialisation.

3.11.1 Class and Global Variables
Most languages provide variables that are accessible to all instances of a class.
If classes are objects then their denotation can be augmented to include the
variables (cf. p. 59):

Class obj :: Name : Class name
Instvars : Id-set

Method response : Class den
Classvars : Id m Oop

The domain of identifiers is also extended to include these new variables,
and the meaning functions extended to access and update them (cf. pp. 35,
40):

Var id = Arg id∪ Temp id∪ Inst var id ∪ Class var id

AVar id = Temp id∪ Inst var id ∪ Class var id

Class var id :: Id

MExpression mk-Class var id(id) ρδσ
(class var(id, class(Rcvr(δ),σ),σ), δ ,σ)

MExpression mk-Assignment(id, rhs) ρδσ
let (result, δ ′,σ′) = MExpression rhs ρδσ in
cases id of
…
mk-Class var id(cv)→ result, δ ′,

update class var(cv,
class(Rcvr(δ ′),σ′), result,σ′)

end

update class var : Id ×Oop × Oop ×Object memory
→ Object memory

update class var(id, class, value,σ)
let old = body(class,σ) in
let class′ = µ(obj, Classvars

Classvars(old) † id value) in
σ † class µ(σ (class), Body class′)

If classes are not objects, then an extra component has to be added to
Object memory for class variables:

Object memory :: Objects : Oop m Object
Classvars : Class name m Id m Oop

However, an alternative to both of these schemes in to abolish class vari-
ables entirely. In §3.3 it was argued that one object should not be able to
change the internal state of another without sending it a message (the Princi-
ple of Object Encapsulation). Modifying class variables directly is in breach
of this principle, because they are components of class objects. Rather than
having extra syntax and extended meaning functions for class variables, prim-
itive methods can be provided to access them, so long as symbols are present
as objects (§3.10.3). Access to class variables then takes place by sending
messages.

cv assign primitive :Primitive method
cv assign primitive

λclass oop, [cv oop, value],σ ⋅
let cv = body(cv oop,σ) in
if cv ∈ domClassvars(body(class oop,σ))
then (value, update class var(cv, class oop, value,σ))
else cv assign error(class oop, cv oop, value,σ)

cv ref erence primitive :Primitive method
cv ref erence primitive

λclass oop, [cv oop],σ ⋅
let cv = body(cv oop,σ) in
if cv ∈ domClassvars(body(class oop,σ))
then (class var(cv, class oop,σ),σ)
else cv ref erence error(class oop, cv oop, value,σ)

class var : Id ×Oop × Object memory → Oop
class var(id, class,σ) Classvars(body(class,σ))(id)

(These primitives are similar to the assign and ref erence primitives of
§3.10.3.)

Finally, let us note that the argument in favour of abolition of class variables
(that they violate the Principle of Object Encapsulation) can also be applied to
global variables: they are best eliminated from object-oriented languages.

3.11.2 Mutable Classes
The second use of classes as objects, namely to support the programming en-
vironment, is more complex. First, the situation in Smalltalk-80 is described,
and then other approaches are outlined.

In the Smalltalk system, classes and methods are objects. However, rather
than placing the denotations of methods and classes in the object memory
(as has been done above), representations of those denotations, with inter-
nal, accessible structure are used. Methods, for example, are represented by
sequences of instructions for a virtual machine. This enables the Smalltalk
compiler, which transforms Smalltalk source code into instruction sequences
for the virtual machine, to be written in Smalltalk itself. Based on this, the
Smalltalk programming environment allows class and method definitions to
be edited interactively within Smalltalk, compiled with the Smalltalk compiler,
and installed in the system whilst it is running.

Although it is possible to define such a system formally by defining the
virtual machine’s semantics, the definition would not be useful when examin-
ing the design of the language, or the semantics of any program (other than the
compiler, perhaps). The semantics of a programming language are best defined
in abstract terms, without recourse to operational notions. Furthermore, one
can only sensibly reason about a program when the semantics of the language
in which that program is written are fixed; in Smalltalk that need not be the
case, as the compiler can be modified and recompiled within the system.

Even if the language semantics are fixed, there is still a problem with de-
notational definitions if the language supports self-modification of programs.
Clearly, if a program can modify itself, its meaning cannot be determined at
“compile-time.” For example, the meaning function for an eval expression that
computes an expression and then evaluates it might be:

MExpr :Expr → Env → Store → Store
MExpr eval e ρσ

let (expr val,σ′) = MExpr e ρσ in
MExpr expr val ρσ′

In semantic terms, the denotational definition is not well-founded: the de-
notation of an expression is not composed from its constituent parts, but from

run-time values.
A technique known as reflection has been used to address this problem for

Lisp [Smi82], and shows some promise as a technique with wider application,
provided that the foundational issues can be resolved [Yel87]. A reflective
language has primitives that enable a program to inspect and modify its text,
environment and continuation. To do this, the semantic domains involved in
the definition of the language must also be part of the value space. One prim-
itive, termed a reifier, returns the current text, environment and continuation
(or some subset of the three) as a value. Another, termed a reflective primi-
tive, takes arguments representing text, environment and continuation, and “in-
stalls” them as the current text, environment and continuation. The semantics
of a program written in a reflective language are given by a fixed point of the
meaning functions; in this sense the meaning functions define an interpreter.

Given that the state of the art regarding the semantic definition of self-
modifying programs is not advanced, and that this issue is not an especially
important feature of object-oriented languages (it is simply that it is more useful
in a dynamically-bound language), no attempt will be made to fit these features
into the formal model.

3.12 An Alternative to Classes: Prototypes
Rather than grouping objects with similar behaviour into classes, a more dy-
namic system of organisation based on prototypes and delegation can be used.
Although the idea of prototype objects has been around for at least a decade
(it appears in ThingLab [Bor77, Bor81]), it gained widespread recognition as
an important technique when given prominence by Lieberman [Lie86b].

In a prototype-based system, an object is created by cloning an existing
object; the existing object is said to be the clone’s prototype. Clones can in turn
be cloned; the prototype relation between objects defines a forest of objects.

Immediately after a clone has been created, it has no instance variables or
methods of its own; they are all inherited from its prototype. When an assign-
ment to an instance variable takes place in an inherited method, the instance
variable is created in the clone if it does not exist; the instance variable in the
prototype is unaltered.

An object can choose to delegate a message to another object. The object

that has been delegated to has access to the instance variables of the delegating
object while processing the message.

Relating these ideas to the semantics presented earlier, the definition of a
Plain object changes to use a prototype rather than a class:

Plain object :: Prototype : [Oop]
Attributes : Id m Oop

Note that the field Instvars has been replaced by one named Attributes. This
is because the private internal state can also include methods. The domain of
primitive objects is extended to include method denotations:

Primitive object = …∪Method den

Methods come in two varieties, conventional methods and methods that
delegate to another object (for simplicity we shall only allow delegation to
objects that are referred to by an instance variable, rather than an arbitrary
expression):

Method body = Conventional method∪ Delegated method

Delegated method :: Id

Conventional method :: Params : Ulist(Id)
Temps : Id-set
Expr : Expression

To support delegation, the denotation of a method has to be altered to take
two extra parameters (cf. p. 36): the first is the selector of the message, and is
used when delegating:

Method den = Selector→
Oop × Oop × Oop∗ × Object memory →

Oop ×Object memory

The second parameter is the Oop of the message receiver (known as the
client), and the first is the Oop of the object that the message was delegated to
(known as the receiver); the other parameters are as before.

The dynamic environment also requires an extra component (cf. p. 38):

DEnv :: Rcvr : Oop
Client : Oop

Params : Id m Oop
Temps : Id m Oop

3.12.1 Identifiers and Assignments
As methods can be assigned dynamically from object to object, and instance
variables created at run-time, a dynamic search must take place for the value
of an instance variable, possibly resulting in an error (the error behaviour is
left unspecified). Contrast this with §3.6, where the structure and behaviour of
every object is completely determined by its class, and cannot change.

Also, when a message has been delegated, self refers back to the object that
delegated the message, rather than the object that is processing the message.
This is explained fully in [Lie86b]; in short, an object that is delegated to
provides the message response, but gets state information from the delegating
object.

Therefore, the search begins at the current message receiver. If an attribute
is not found, the client is searched; if still not found, the prototype chain is
followed.

f ind attribute : Id × Oop ×Object memory → Oop
f ind attribute(id, obj,σ)

if id ∈ domAttributes(σ (obj))
then Attributes(σ (obj))(id)
else if Prototype(σ (obj)) = nil

then unf ound attribute error(id, obj,σ)
else f ind attribute(id, Prototype(σ (obj)),σ)

If after searching the entire prototype chain the attribute is not found, an
error is signalled (the error behaviour is left unspecified).

MExpression :Expression → DEnv → Object memory →
Oop × DEnv ×Object memory

MExpression mk-Inst var id(id) δσ
if id ∈ domAttributes(σ (Rcvr(δ)))
then (Attributes(σ (Rcvr(δ)))(id), δ ,σ)
else f ind attribute(id, Client(δ),σ)

As mentioned earlier, instance variables are created as required:

MExpression mk-Assignment(id, rhs) δσ
let (result, δ ′,σ′) = MExpression rhs δσ in
cases id of
mk-Temp id(t) → (result, update temp(t, result, δ ′),σ′)
mk-Inst var id(iv)→ (result, δ ′,

update inst var(iv,
Rcvr(δ ′), result,σ′))

end

where update inst var and update temp are similar to their previous defi-
nitions.

3.12.2 Sending and Delegating Messages
The meaning of a conventionalmethod is similar to the class-based definition:

MMethod body :Method body→ Method den
MMethod body mk-Conventional method(f ormals,

temps, expr)
λselector ⋅ λrcvr, client, actuals,σ ⋅

let bindings = bind args(f ormals, actuals) in
let δ = mk-DEnv(rcvr, client, bindings, initialise(temps)) in
let (result, δ ′,σ′) = MExpression expr δσ in
(result,σ′)

MExpression mk-Message(rcvr, sel, arglist) δσ
let (rcvr oop, δ ′,σ′) = MExpression rcvr δσ in
let (actuals, δ ′′,σ′′) = MExpression list arglist δ ′σ ′ in
let (result,σ′′′) = send(rcvr oop, sel, actuals,σ′′) in
(result, δ ′′,σ′′′)

send :Oop × Selector × Oop∗ × Object memory →
Oop × Object memory

send(rcvr, sel, args,σ)
f ind method(sel, rcvr,σ)(sel)(rcvr, rcvr, args,σ)

f ind method : Selector × Oop × Object memory → Method den
f ind method(sel, oop,σ)

let res = f ind attribute(sel, oop,σ) in
if body(res,σ) ∈ Method den
then body(res,σ)
else unf ound method error(sel, oop,σ)

Note that sending a message in the conventional way identifies the receiver
and the client as the same object.

A delegated method, on the other hand, changes only the receiver; the client
stays the same:

MMethod body mk-Delegated method(id)
λselector ⋅ λrcvr, client, actuals,σ ⋅

let δ = mk-DEnv(rcvr, client, ,) in
let (dgt, δ ′,σ′) = MExpression mk-Inst var id(id) δσ in
delegate(dgt, selector, actuals, client,σ′)

delegate :Oop × Selector ×Oop∗ × Oop × Object memory →
Oop × Object memory

delegate(rcvr, sel, args, client,σ)
f ind method(sel, rcvr,σ)(sel)(rcvr, client, args,σ)

This is similar in action to the inherit from statement in the Generalized
Object Model (§2.2).

An object created by cloning has no initial internal state; everything is
inherited from its prototype:

clone primitive (Prototype:Oop) new oop:Oop
ext wr σ : Object memory
post new oop ∉ dom σ

∧ σ = σ ∪ new oop mk-Object(prototype,)

3.12.3 Summary
Prototypes organise objects in ways that can change much more dynamically
than class-based systems. This has led to their use in languages designed for
exploratory AI work, such as the series of Act languages developed at MIT
[Lie86a, The83]. As Lieberman has shown [Lie86b], a prototype-based sys-
tem can simulate a class-based system, but not vice versa. Also, the use of
delegation can lead to a cleaner organisation in some types of system. How-
ever, the extra flexibility gained by prototypes results in new kinds of program-
ming errors (references to instance variables that do not exist, for example),
and lacks the organisational framework provided by class-based systems that
use inheritance. Both types of system have their merits, and it is unlikely that
one will become dominant in the near future.

This chapter has described the fundamentals behind class-based and pro-
totype-based systems. The next chapter introduces inheritance to class-based
systems; one form of multiple inheritance is shown to be similar to the proto-
type approach.

Chapter 4

Inheritance

Everything in the universe goes by indirection.

Ralph Waldo Emerson

The previous chapter described the fundamental concepts of object-oriented
programming: objects, methods and classes. Classes describe the similarities
between objects, and in many object-oriented languages can themselves be
related by inheritance. The purpose of inheritance is to encourage reuse of
code; it supports a style of programming known as differential programming,
in which the programmer develops a new class by stating the differences be-
tween the new class and an existing class.

A widely-held opinion is that object-oriented programming is inextrica-
bly tied to inheritance [Weg86, Str87], although the previous chapter showed
that this view is mistaken. Chapter 3 argued that the central concept of object-
oriented programming was strong information-hiding, at the object level. Nev-
ertheless, inheritance is widespread amongst object-oriented languages, and is
an important technique in the design and construction of object-oriented pro-
grams. This chapter adds inheritance to the model presented in the previous

70

chapter, and discusses its effects on the semantics of object-oriented languages.
The first addition is the simplest form of inheritance, single inheritance.

Later, various forms of multiple inheritance are compared to each other and to
single inheritance. Other issues, such as static binding, visibility of methods,
and use of inherited methods, are also discussed.

4.1 Single Inheritance
In a single inheritance system, a superclass relation is defined on the classes
such that each class can have at most one superclass.1 The superclass relation
must be well-founded; hence, the classes are organised into a hierarchy, or tree,
or, if there is more than one root, a forest.

The change in structure of a class definition is indicated by an extra field
in the abstract syntax (cf. p. 32):

Class body :: Instvars : Id-set
Methods : Method map
Parent : Parent class

Method map = Selector m Method desc

Method desc = Method body∪ Primitive method

Parent class = [Class name]

parent :Class name × Class map→ Parent class
parent(class, class map) Parent(class map(class))

1To avoid confusion when the terms subclass and superclass may be ambiguous, the terms
parent and child are used to mean direct superclass and direct subclass. The meaning of the terms
ancestor and descendant should be obvious.

(All the auxiliary functions defined on elements of the modified abstract
syntax assume that certain context conditions are satisfied; these are set out in
§4.1.1.)

A class inherits definitions of instance variables and methods from its par-
ent class, which in turn inherits from its parent, and so on. One distinction is
usually made between instance variables and methods: a class may override
any inherited method, and provide its own definition of the method; it may
not alter the inherited definition of instance variables, but only extend it. This
means all the methods that a class inherits can be applied to its instances, as
they contain all the instance variables defined by its ancestors.

The following functions return all the instance variables and methods of a
class, including those inherited from its ancestors:

inst vars :Class name × Class map→ Id-set
inst vars(class id, class map)

Instvars(class map(class id))
∪ inherited inst vars(class id, class map)

inherited inst vars :Class name × Class map→ Id-set
inherited inst vars(class id, class map)

if parent(class id, class map) = nil then
else inst vars(parent(class id, class map), class map)

all methods of :Class name × Class map→ Method map
all methods of (class id, class map)

inherited methods(class id, class map)
†Methods(class map(class id))

inherited methods :Class name × Class map→ Method map
inherited methods(class id, class map)

if parent(class id, class map) = nil then
else all methods of (parent(class id, class map), class map)

Inheritance alters the meaning of classes: the meaning of a class must in-
clude the meanings of its inherited methods, and its instances include inherited
instance variables, as well as any defined locally. Despite this, there is no need
to alter any of the meaning functions defined in the previous chapter. Instead,
the meaning of a system of classes related by inheritance can be given by “pro-
cessing out” the inheritance, so that the definition of each class includes all its
inherited attributes. Applying the meaning functions of the last chapter to the
processed classes yields the desired meaning.

This approach is taken because:

• it shows that inheritance does not require any changes to the semantic
domains or meaning functions, and

• it will allow us to compare single inheritance with the schemes for mul-
tiple inheritance described in later sections.

Factoring out inheritance is straightforward. If an element of the abstract
syntax defined in the previous chapter is denoted by e, and the corresponding
element in the inheritance syntax is denoted by e′, then e′ = e, except for
Programs and Class bodies. Therefore, the functions defined thus far in this
chapter should all have signatures with primed types; primes will be used this
way for the remainder of the chapter.

The processing of programs and classes uses the following functions:

PProgram :Program′ → Program
PProgram p

class id PClass class id p | class id ∈ domp

PClass :Class name → Class map′ → Class body
PClass class id class map

mk-Class body(inst vars(class id, class map),
all methods of (class id, class map))

The PClass function “copies down” the instance variables and methods
inherited from its argument’s parent using the inst vars and all methods of
functions.

4.1.1 Context Conditions
What restrictions must be imposed on a program so that the processing func-
tions and, hence, meaning functions are always defined? This section states the
context conditions that must hold for a program to be considered well-formed.
The meaning and processing functions are undefined unless the context condi-
tions hold, i.e.,

pre-PProgram p WFProgram p

The meaning of a program is then given by applying MProgram to a pro-
cessed program, i.e., MProgram PProgram p .

A context condition environment,2 CCEnv, records the relevant parts of
the surrounding context of the syntactic clause being considered. These are:

• the instance variables of the enclosing class (local and inherited),

• the local variables of the surroundingmethod (distinguishingparameters
from temporaries), and

• the names of the classes in the program.

CCEnv :: Instvars : Id-set
Params : Id-set
Temps : Id-set
Classes : Class name-set

For a program to be well-formed, the superclass relation must be well-
founded, the superclass of every class must be defined, and each class must be
well-formed:

2A context condition environment is referred to as a “static environment” in [BJ82].

WFProgram :Program′ →
WFProgram class map

non circular(class map)
∧ ∀class id ∈ dom class map ⋅

let inh iv = inherited inst vars(class id, class map) in
let θ = mk-CCEnv(inh iv, , , dom class map) in
parent(class id, class map) ∈ domclass map∪ nil
∧WFClass class map(class id) θ

non circular :Class map′ →
non circular(class map)

∀s ⊆ domclass map ⋅
s≠ ⇒ ∃class id ∈ s ⋅parent(class id, class map) ∉ s

For a class to be well-formed, it must not redeclare any instance variables,
and all non-primitive methods must be well-formed:

WFClass :Class body′ → CCEnv→
WFClass mk-Class body′(iv, meths,) θ

let θ′ = µ(θ, Instvars Instvars(θ)∪ iv) in
is disjoint(iv, Instvars(θ))
∧ ∀sel ∈ dommeths ⋅

meths(sel) ⁄∈ Primitive method
⇒ nargs(sel) = lenParams(meths(sel))

∧WFMethod meths(sel) θ′

is disjoint :X-set × X-set →
is disjoint(s1, s2) s1 ∩ s2 =

The nargs function returns the number of arguments associated with a se-
lector. A Smalltalk-like selector has the following structure:

Selector = Unary∪ Binary ∪ Keyword

Unary :: Id

Binary :: +, −, ∗, /, <,…

Keyword :: Id∗

nargs :Selector →
nargs(sel) cases sel of

mk-Unary() → 0
mk-Binary() → 1
mk-Keyword(ids)→ len ids
end

Note that a unary selector has no arguments, only a receiver, and a binary
selector has one argument.

A method is well-formed if its body is well-formed, in an environment that
includes the parameters and temporaries:

WFMethod :Method body′ → CCEnv→
WFMethod mk-Method body′(params, temps, expr) θ

let θ′ = µ(µ(θ, Params rngparams), Temps temps) in
WFExpression expr θ′

Now the context conditions for expressions are enumerated.

WFExpression :Expression′ → CCEnv →
WFExpression mk-Expression list′(exprs) θ

lenexprs ≥ 1 ∧ ∀e ∈ rngexprs ⋅WFExpression e θ

Parameters are assumed to be constant within a method, and cannot be
assigned to. Hence an assignment expression is well-formed if it assigns to a
declared temporary or instance variable, and the assigned expression is well-
formed:

WFExpression mk-Assignment′(id, rhs) θ
WFExpression rhs θ ∧
cases id of
mk-Inst var id(iv)→ iv ∈ Instvars(θ)
mk-Temp id(t) → t ∈ Temps(θ)
end

All applied occurrences of identifiers must have matching defining occur-
rences:

WFExpression mk-Inst var id(id) θ id ∈ Instvars(θ)

WFExpression mk-Temp id(id) θ id ∈ Temps(θ)

WFExpression mk-Arg id(id) θ id ∈ Params(θ)

WFExpression SELF θ true

The number of arguments to a message must match the number in the se-
lector (this becomes a dynamic check if the selector does not contain argument
information [see §3.10.3]), and the receiver and argument expressions must be
well-formed:

WFExpression mk-Message′(rcvr, sel, args) θ
WFExpression rcvr θ
∧ lenargs = nargs(sel)
∧ ∀arg ∈ rngargs ⋅WFExpression arg θ

A new-expression must refer to a valid non-primitive class:

WFExpression mk-New object(class) θ
class ∈ Classes(θ) − Primitive classes

Primitive classes = Integer,Symbol,…

All literals are well-formed:

WFExpression l θ true for l ∈ Int literal∪…

4.2 Static Binding of Messages
A drawback of using the inheritance scheme defined above is that any method
that has been overridden in a subclass is inaccessible to instances of that sub-
class. This is unfortunate because it can be useful to override a method purely
to augment its behaviour (e.g., a subclass may want to initialise inherited vari-
ables using a method defined in its parent, and then perform extra initialisation
on its local variables), but the current scheme bars access to overridden meth-
ods.

To circumvent this problem, many object-oriented languages have a mech-
anism for accessing inherited, overridden methods. In a Smalltalk method, for
example, the distinguished identifier super refers to the same object as self, but
messages sent to super are bound to methods in the superclass of the method
fromwhich the message is sent. An important property of the supermechanism
is that overridden methods are still inaccessible to objects other than self.

To model superclass sends formally, we first extend the syntax:

Expression′ = Expression list′ ∪ Assignment′ ∪ Object name
∪Message′ ∪ New object∪ Literal object∪ Super send

Super send :: Sel : Selector
Args : Expression′∗

Note that the receiver is implicitly the object denoted by self.
Because the graph of classes is static, the method invoked in response to a

superclass send can be determined statically. This is done at the pre-processing
stage, when inheritance is factored out of the abstract syntax. A new kind of
message-send expression, statically binding a message to a method, is used in
the processed abstract syntax:

Static send :: Sel : Selector
Args : Expression∗
Class : Class name

Expression = Expression list∪Assignment∪Object name∪Message
∪ New object∪ Literal object∪ Static send

A Static send is equivalent to a conventional procedure call.
Now that the domains of expressions before and after processing are dif-

ferent, i.e., Expression′ ≠ Expression, extra processing functions are required.
First, the all methods of function changes so that the other processing func-
tions are invoked (cf. p. 72):

all methods of :Class name × Class map′ → Method map
all methods of (c, class map)

inherited methods(c, class map)
† PMethods Methods(class map(c)) parent(c, class map)

The PMethods function processes a method body, which in turn involves
processing the constituent expressions. The functions that process methods and
expressions take the superclass of the current method as an argument so that
they can determine which method is invoked in response to a Static send.

Method map′ = Selector m Method desc′

Method desc′ = Method body′ ∪ Primitive method

Method map = Selector m Method desc

Method desc = Method body∪ Primitive method

PMethods :Method map′ → Class name→ Method map
PMethods meths parent

sel PMethod meths(sel) parent | sel ∈ dommeths

PMethod :Method desc′ → Class name→ Method desc
PMethod m parent

if m ∈ Primitive method
then m
else let mk-Method body′(params, temps, expr) = m in

mk-Method body(params, temps,
PExpression expr parent)

PExpression :Expression′ → Class name → Expression
PExpression expr parent

cases expr of
mk-Super send(sel, args)→ mk-Static send(sel,

PExpression list args parent,
parent)

mk-Assignment′(l, r) → mk-Assignment(l,
PExpression r parent)

mk-Message′(r, s, a) → mk-Message(
PExpression r parent,
s, PExpression list a parent)…

end

(The arms of the cases expression that simply re-tag expressions have been
elided.)

A new meaning function is required for statically-bound messages:

MExpression :Expression → SEnv →
DEnv → Object memory →

Oop × DEnv × Object memory
MExpression mk-Static send(sel, args, class) ρδσ

let (actuals, δ ′,σ′) = MExpression list args ρδσ in
let (result,σ′′)

= method(sel, class, PD(ρ))(Rcvr(δ ′), actuals,σ′) in
(result, δ ′,σ′′)

Note that no check is required to see whether the message is understood;
this is guaranteed by the context conditions (given below).

A field is added to the context condition environment, recording the selec-
tors of methods inherited by a class, and this is used to check that Super sends
are well-formed (cf. p. 74).

CCEnv :: Instvars : Id-set
Params : Id-set
Temps : Id-set
Classes : Class name-set

Inherited selectors : Selector-set

WFProgram :Program′ →
WFProgram class map

non circular(class map) ∧
∀class id ∈ domclass map ⋅

let p = parent(class id, class map) in
let inh iv = inherited inst vars(class id, class map) in
let inh sel = if p = nil then else selectors(p, class map)in
let θ = mk-CCEnv(inh iv, , , dom class map, inh sel) in
p ∈ dom class map∪ nil
∧WFClass class map(class id) θ

selectors :Class name × Class map′ → Selector-set
selectors(class id, class map)

domall methods of (class id, class map)

WFExpression mk-Super send(sel, args) θ
lenargs = nargs(sel)
∧ sel ∈ Inherited selectors(θ)
∧ ∀arg ∈ rngargs ⋅WFExpression arg θ

4.3 Multiple Inheritance
In a language with multiple inheritance, a class may have any number of parent
classes. The child class inherits all the methods and instance variables of all
of its parents. The main distinctions between different multiple inheritance
schemes are:

• how name conflicts in inherited instance variables are handled, and

• how conflicting inherited methods are handled.

These cases are treated differently because instance variables are private to ob-
jects, whereas methods are public. Another distinction arises when an attribute
is inherited via different routes from the same class. Both instance variables
and methods are deemed to be conflicting if their names (selectors, for meth-
ods) conflict; in general one cannot determine if two methods are the same
(have the same meaning).

Three basic types of multiple inheritance scheme are described here. In
the first, the graph structure formed by the superclass relation is preserved:
attributes inherited from the same node via different paths are not considered
to be different, and so do not conflict (see Fig. 4.1(a)). When attempting to
resolve a conflict in the second scheme, the graph of ancestors of a class is
linearised. The resulting total order is used to select amongst the conflicting
attributes; no user intervention is required (see Fig. 4.1(b)). The third inher-
itance scheme “unfolds” the graph from a particular class into a tree, so that
there is nomerging of inherited attributes. It differs from thefirst form of inher-
itance only when an attribute is inherited via different paths (see Fig. 4.1(c)).
Snyder has named these schemes graph, linear and tree inheritance [Sny86b].

All three schemes require the following change to the abstract syntax (cf.
p. 71):

Class body′ :: Instvars : Id-set
Methods : Method map′
Parents : Parent classes

parents :Class name × Class map′ → Parent classes
parents(class, class map) Parents(class map(class))

x

y z

w

x

y

z

w

x

y z

w1 w2

The child→parent relation for:
(a) Graph inheritance (b) Linear inheritance (c) Tree inheritance

Figure 4.1: Three different inheritance schemes

For the graph and tree inheritance schemes, Parent classes = Class name-set,
whereas for the linear inheritance scheme Parent classes = Ulist(Class name).3

Additionally, the abstract syntax for a Super send changes so that the pro-
grammer chooses the class referred to by super (cf. p. 78):

Super send :: Sel : Selector
Args : Expression′∗

Parent : Class name
This simplifies pre-processing since Super sends and Static sends now

have the same structure.

4.3.1 Graph Inheritance
In graph inheritance, the user must resolve conflicts between inheritedmethods
by writing a new method. For example, in Fig. 4.1(a), if both classes y and z
define a methodm, then class xmust override those definitionswith a definition
of its own. One thing the new method might do is invoke one or more of the
conflicting methods using a Super send.

As regards conflicting inherited instance variables, these are not allowed.
If both classes y and z define an instance variable i, then the inheritance graph

3See p. 33 for a definition of the Ulist constructor.

of Fig. 4.1(a) is illegal. Also, if they inherit the same instance variable from
different classes (e.g., from w1 and w2 in Fig. 4.1(c)), then the graph is also
illegal. But an instance variable inherited from the same class via multiple
routes is not considered to be in conflict (e.g., an instance variable defined
in class w in Fig. 4.1(a)). This is a major failing of graph inheritance; that
private features of classes become visible when the classes are composed using
inheritance (see §4.4). Graph inheritance is used in “extended” Smalltalk-80
[BI82].

Changes to Context Conditions

The context condition environment is changed to record the classes that provide
inherited selectors (cf. pp. 74, 81):

CCEnv :: Instvars : Id-set
Params : Id-set
Temps : Id-set
Classes : Class name-set

Inherited selectors : Class name m Selector-set
The changes to the context conditions to reflect the new restrictions are as

follows (cf. pp. 72, 75):

WFProgram :Program′ →
WFProgram class map

non circular(class map)
∧ ∀class id ∈ dom class map ⋅

let par = parents(class id, class map) in
let anc = ancestors(class id, class map) in
let inh iv = inherited inst vars(class id, class map) in
let θ = mk-CCEnv(inh iv, , , dom class map,

p selectors(p, class map) | p ∈ par) in
par ⊂ dom class map
∧ non conf licting instvars(anc, class map)
∧ non conf licting methods(class id, par, class map)
∧WFClass class map(class id) θ

ancestors :Class name × Class map′ → Class name-set
ancestors(class, class map)

let p = parents(class, class map) in
p∪ ancestors(c, class map) | c ∈ p

inherited inst vars :Class name × Class map′ → Id-set
inherited inst vars(class, class map)

inst vars(c, class map) | c ∈ parents(class, class map)

The non circular function changes because the previous, simpler version
could not cope with relations (cf. p. 75):

non circular :Class map′ →
non circular(class map)

∀classes ⊆ dom class map ⋅
classes ≠ ⇒
∃c1 ∈ classes ⋅
∀c2 ∈ classes ⋅ c2 ⁄∈ parents(c1, class map)

The instance variables of a set of classes do not conflict iff they are all
different:

non conf licting instvars :Class name-set × Class map′ →
non conf licting instvars(classes, class map)

∀c1, c2 ∈ classes ⋅
c1 ≠ c2 ⇒ is disjoint(Instvars(class map(c1)),

Instvars(class map(c2)))

Two methods conflict when their names are the same and they are not
inherited from the same place; the conflict can be resolved by providing a new,
overriding method:

non conf licting methods :Class name × Class name-set ×
Class map′ →

non conf licting methods(c, parents, class map)
∀sel ∈ conf licting selectors(parents, class map) ⋅

sel ∈ domMethods(class map(c))

The test for conflict between a selector inherited from two different classes
involves comparing the defining class of the selector: if the selector has been
inherited from different classes, then there is a conflict. To do this, the sel to
class function builds a map from all the selectors in a class to the Class name
in which each was defined.

conf licting selectors :Class name-set × Class map′ →
Selector-set

conf licting selectors(classes, class map)
let sel set = all selectors(c, class map) | c ∈ classes in
sel ∈ sel set |

∃c1, c2 ∈ classes ⋅
sel to class(c1, class map)(sel)

≠ sel to class(c2, class map)(sel)

all selectors :Class name × Class map′ → Selector-set
all selectors(class, class map)

all selectors(p, class map) | p ∈ parents(class, class map)
∪ domMethods(class map(class))

sel to class :Class name × Class map′ →
Selector m Class name

sel to class(class, class map)
sel to class(p, class map) | p ∈ parents(class, class map)
† sel class | sel ∈ domMethods(class map(class))

The special union symbol, , and its distributed form, , signifies map
union with overlapping elements:

:X m Y × X m Y → X m Y
a b (domb a)∪b iff ∀x ∈ (doma∩ domb) ⋅a(x) = b(x)

This form of “loose” map union is used because classes may inherit the
same method via different routes.

One additional change is required, to check that a genuine parent is being
used (cf. p. 81):

WFExpression mk-Super send(sel, args, parent) θ
lenargs = nargs(sel) ∧
parent ∈ dom Inherited selectors(θ) ∧
sel ∈ Inherited selectors(θ)(parent) ∧
∀arg ∈ rngargs ⋅WFExpression arg θ

Changes to Pre-processing

The changes to the pre-processing functions required for Super sends (p. 80)
are no longer required, as Super sends must now explicitly name a class.
Therefore the pre-processing functions of §4.1 are used. The only necessary
change is to inherited methods, and is straightforward (cf. p. 72):

inherited methods :Class name × Class map′ → Method map
inherited methods(class id, class map)

all methods of (p, class map)
| p ∈ parents(class id, class map)

Having ensured that class definitions are restricted in such a way that con-
flicts do not exist, and that all inheritance has been “processed out”, no changes
to the meaning functions of Chapter 3 and §4.2 are required.

4.3.2 Linear Inheritance
In contrast to graph inheritance, where the user must resolve conflicts between
inherited methods, and ensure there are no conflicts between inherited instance

variables, linear inheritance resolves all conflicts automatically. It does this
by creating a total order of a class and its ancestors (known as a precedence
list), and using the order to select between conflicting methods. Moreover,
most systems place a restriction on possible orderings so that some inheritance
graphs are disallowed. In the Lisp-based object-oriented systems (e.g., Flavors
[Moo86] and CLOS [DG87]), the parents of a class are ordered by the user,
and the resulting total order of ancestors must obey the following rules:

• a class must always precede its parents, and

• the user’s ordering of a class’s parents must be preserved within the
precedence list.

If, for example, class A has parents [X, Y], and class B has parents [Y, X], then
A and B can have no common offspring.

To model this formally, Parent classes is changed thus:

Parent classes = Ulist(Class name)

parents :Class name × Class map′ → Class name-set
parents(class, class map) rngParents(class map(class))

Many different algorithms can be used to create an ordering that satisfies
the above rules. Instead of listing different algorithms, a specification is given:

ordering (c:Class name,
class map:Class map) prec list:Ulist(Class name)

post c ∪ ancestors(c, class map) = rngprec list ∧
∀class ∈ rngprec list ⋅

is subseq([class] Parents(class map(class)), prec list)

The Ulist type defined earlier models a total order. The is subseq function
describes the rules about ordering of parent classes:

is subseq :X∗ × X∗ →

is subseq(a, b)
∃m ∈ 1

m
1 ⋅

domm = doma ∧ rngm ⊆ domb ∧
∀i, j ∈ domm ⋅

a(i) = b(m(i)) ∧ a(j) = b(m(j))
∧ (i < j ⇔ m(i) < m(j))

Given an ordering function that satisfies the above specification, the context
conditions for a program can be defined. The only change from the graph-
inheritance context conditions is in WFProgram, where the restrictions on
methods and instance variables can be relaxed (cf. p. 84):

WFProgram :Program′ →
WFProgram class map

non circular(class map)
∧ ∀class id ∈ dom class map ⋅

let parents = parents(class id, class map) in
let inh iv = inherited inst vars(class id, class map) in
let θ = mk-CCEnv(inh iv, , , dom class map,

p selectors(s, class map) | p ∈ parents) in
∃prec list ∈ Ulist(Class name) ⋅

post-ordering(class id, class map, prec list)
∧ parents ⊂ domclass map
∧WFClass class map(class id) θ

Note that in the linear inheritance systems used in Flavors (and its cousins)
there can be no conflict in inherited instance variables: variables with the same
name are considered the same, even if they are inherited from different classes.

To process a linear multiple-inheritance program into a program without
inheritance, only a few of the auxiliary functions used for processing graph-
inheritance programs need be changed. The all methods of function returns
the set of all methods defined on a class, using the ordering function to resolve
conflicts (cf. p. 79):

all methods of :Class name × Class map′ → Method map
all methods of (class id, class map)

methods f rom(ordering(class id, class map), class map)

methods f rom :Ulist(Class name) × Class map′ → Method map
methods f rom(class list, class map)

if class list = [] then
else methods f rom(tlclass list, class map)

†Methods(class map(hdclass list))

Static Binding in Linear Inheritance Systems

Although the extended form of Super send used in graph inheritance could
be adopted in linear inheritance systems, several Lisp-based object-oriented
languages (e.g., CommonLoops and CLOS [BKK+86, DG87]) choose to use
the simpler version described in §4.2. In these systems super refers to the
succeeding class in the precedence list. This need not be a parent class at
all: e.g., in Fig. 4.1(b), the precedence list of class x is [x, y, z, w], so that a
method defined in class y and inherited by class x has class z as its successor,
although z is not an ancestor of y. The use of super in this method will invoke
a method in z (if there is one), rather than one in w. Therefore, the meaning
of the inherited method is dependent on the part of the precedence list that
follows, which may contain arbitrary unrelated classes. Clearly, this can lead
to confusion and error, but is in keeping with the almost arbitrary way in which
attributes can be merged and ordered in these systems.

Some of these languages go so far as to make this into a virtue by allowing
the user to define her own combination techniques for inherited methods based
on the precedence list (e.g., invoke methods in reverse order of precedence)
[Moo86, DG87]. As Snyder has argued, this leads to classes being heavily de-
pendent on the implementation details of their parents [Sny86b, Sny87]. The
next section describes an inheritance scheme that discourages such dependen-
cies.

4.3.3 Tree Inheritance
Snyder has argued that both graph and linear inheritance schemes are defi-
cient with respect to the aims of good software engineering practice [Sny86b,
Sny86a, Sny87]. His view (and it is one that the author agrees with) is that
because classes are the units of modularity in an object-oriented system, the
internal details of a class should not be visible to its subclasses. In effect, the
external interface of a class is all that is guaranteed constant by the class’s de-
signer, and a language should not promote styles of subclassing that depend
on the internal details of an ancestor’s implementation.

The most obvious way that linear and graph inheritance fail in hiding the
internals of a class from its children is that children have direct access to the
inherited instance variables. A consequence of this is that a child may suffer
from name conflicts when inheriting from two unrelated classes, because they
both use the same instance variable name. The linear inheritance solution to
this, of making all the names refer to the same variable, suffers from the usual
problems of aliasing encountered in conventional languages. In general, it is
unlikely that the designers of the classes intentionally chose to use the same
name; unintended conflicts should not result in unusual behaviour (as in linear
inheritance) or prohibit subclassing (as in graph inheritance).

Another problem with graph inheritance occurs when a class inherits an
instance variable via two or more routes: the behaviour of the child class can
be affected if the implementor of a parent class decides to change the imple-
mentation of that class by inheriting from a different class. For example, in
Fig. 4.2(a), if the implementor of class y changes its implementation so that
it inherits instead from a class u (Fig. 4.2(b)) that has an instance variable
with the same name as its original parent w, the child x will either (a) be-
come illegal, because of an instance variable name clash, or (b) have different
behaviour, because classes u and w, though created independently, share the
instance variable.

These problems have led Snyder to propose the tree inheritance scheme.
In tree inheritance, a class cannot see the implementation details of its parents.
In particular, it cannot know which classes they inherit from. To achieve this,
a class does not have direct access to inherited instance variables; an instance
must send messages to itself to access them. Secondly, instance variable names
that are inherited from different classes name different instance variables, even

x

y z

w

x

y z

u w

(a) Before (b) After
A change in the inheritance graph of y causes an unexpected change in the behaviour
of x in the graph and linear inheritance schemes.

Figure 4.2: Problems with graph and linear inheritance

if they were originally inherited from a common class.
No abstract syntax changes are required from the graph inheritance model,

but the context conditions now restrict access to inherited instance variables
(cf. pp. 75, 84):

WFProgram :Program′ →
WFProgram class map

non circular(class map)
∧ ∀class id ∈ dom class map ⋅

let par = parents(class id, class map) in
let θ = mk-CCEnv(, , , dom class map,

p selectors(p, class map) | p ∈ par) in
par ⊂ dom class map
∧ non conf licting methods(class id, par, class map)
∧WFClass class map(class id) θ

WFClass :Class body′ → CCEnv→
WFClass mk-Class body′(iv, meths,) θ

∀sel ∈ dommeths ⋅
meths(sel) ⁄∈ Primitive method

⇒ nargs(sel) = lenParams(meths(sel))
∧WFMethod meths(sel) µ(θ, Instvars iv)

Tree inheritance uses a more restrictive notion of conflict between inherited
selectors than graph inheritance. A selector inherited from different classes
causes a conflict, regardless of where its associated method was defined (cf.
p. 86):

conf licting selectors :Class name-set × Class map′ →
Selector-set

conf licting selectors(classes, class map)
let sel set = all selectors(c, class map) | c ∈ classes in
sel ∈ sel set |

∃c1, c2 ∈ classes ⋅
c1 ≠ c2 ∧ sel ∈ all selectors(c1, class map)

∧ sel ∈ all selectors(c2, class map)

Whereas no changes in meaning functions are required for single inheri-
tance and both graph and linear inheritance, some modification is required with
tree inheritance. This is because the structure of an object now resembles the
structure of the classes from which it is derived.

Changes to Semantic Domains

The structure of an object is that of a tree, isomorphic to the tree of its con-
stituent classes. At each node of the tree are the instance variables defined by
the corresponding class (cf. p. 27):

Plain object :: Local instvars : Id m Oop
Inherited : Class name m Plain object

During the invocation of an inherited method, only a part of the receiver
is in scope; the path taken to find the inherited method is the same as the path
taken to find the part of the object, and is a sequence of class names:

Access path = Ulist(Class name)

New auxiliary functions are required to access and update instance vari-
ables; they use the current path (part of the static environment) to determine
the sub-object of the current receiver that contains the instance variables (cf. pp.
36, 37):

SEnv :: Instvars : Class name m Instvar desc
PD : Program den

Class : Access path

Instvar desc :: Local instvars : Id-set
Inherited : Class name m Instvar desc

inst var : Id ×Oop × Access path × Object memory → Oop
inst var(id, oop, path,σ)

Local instvars(sub body(oop, path,σ))(id)

sub body :Oop × Access path × Object memory → Plain object
sub body(oop, path,σ) sub obj(body(oop,σ), path)

sub obj :Plain object × Access path→ Plain object
sub obj(pobj, path)

if path = [] then pobj
else sub obj(Inherited(pobj)(hdpath), tlpath)

update inst var : Id ×Oop × Oop × Access path × Object memory
→ Object memory

update inst var(id, oop, value, path,σ)
σ † oop µ(σ (oop), Body

update body(body(oop,σ), id, value, path))

update body :Plain object × Id × Oop × Access path→
Plain object

update body(pobj, id, value, path)
if path = []
then µ(pobj, Local instvars

Local instvars(pobj) † id value)
else let inh = Inherited(pobj) in

let new part =
update body(inh(hdpath), id, value, tlpath) in

µ(pobj, Inherited inh † hdpath new part)

Changes to Pre-processing

As mentioned, pre-processing cannot now eliminate inheritance, but is used
to tag each inherited method with the path by which it was inherited. So, the
abstract syntax after processing is like this:

Class body :: Instvars : Instvar desc
Methods : Method map

Method map = Selector m Method desc

Method desc :: Original class : Access path
Method : Method body∪ Primitive method

To tag the methods, the followingauxiliary functions are changed (cf. pp. 72,
79, 87):

inst vars :Class name × Class map′ → Instvar desc
inst vars(class id, class map)

mk-Instvar desc(Instvars(class map(class id)),
p inst vars(p, class map) |

p ∈ parents(class id, class map))

all methods of :Class name × Class map′ → Method map
all methods of (class id, class map)

let meths = Methods(class map(class id)) in
inherited methods(class id, class map)
† sel mk-Method desc([], meths(sel)) | sel ∈ dommeths

inherited methods :Class name × Class map′ → Method map
inherited methods(class id, class map)

∗ methods inherited f rom(p, class map)
| p ∈ parents(class id, class map)

Whereas the definition of inherited methods for graph inheritance was
based on the “loose” map union , the definition for tree inheritance explicitly
excludes any intersection in the maps:

∪∗ :X m Y × X m Y → X m Y
a∪∗b (domb a)∪ (doma b)

This is because any common inherited selectors are in conflict, and must
be overridden in the child class.

methods inherited f rom :Class name × Class map′ →
Method map

methods inherited f rom(class id, class map)
let meth map = all methods of (class id, class map) in
sel prepend class(class id, meth map(sel))

| sel ∈ dommeth map

prepend class :Class name ×Method desc → Method desc
prepend class(c, mdesc)

µ(mdesc, Original class [c] Original class(mdesc))

Changes to Meaning Functions

The change toMClass body sets up the path in the static environment (cf. p. 38):

MClass body :Class body → SEnv → Class den
MClass body mk-Class body(, meths) ρ

sel MMethod meths(sel)
µ(ρ, Class Original class(meths(sel)))

| sel ∈ dommeths

Creating an object involves creating all its parts (cf. p. 43):

MExpression :Expression → SEnv → DEnv →
Object memory →

Oop × DEnv ×Object memory
MExpression mk-New object(class) ρδσ

let new obj = make obj(Instvars(ρ)(class)) in
let (new oop,σ′) = create(mk-Object(class, new obj),σ) in
(new oop, δ ,σ′)

make obj : Instvar desc → Plain object
make obj(iv desc)

let local = id NILOOP | id ∈ Local instvars(iv desc) in
let inh = c make obj(Inherited(iv desc)(c))

| c ∈ dom Inherited(iv desc) in
mk-Plain object(local, inh)

The only other changes are in the interpretation of instance variable iden-
tifiers; the path component of the static environment must be passed to the
appropriate auxiliary function (cf. p. 40):

MExpression mk-Assignment(id, rhs) ρδσ
let (result, δ ′,σ′) = MExpression rhs ρδσ in
cases id of
mk-Temp id(t) → (result, update temp(t, result, δ ′),σ′)
mk-Inst var id(iv)→ (result, δ ′,

update inst var(iv, Rcvr(δ ′),
result, Class(ρ),σ′))

end

MExpression mk-Inst var id(id) ρδσ
(inst var(id, Rcvr(δ), Class(ρ),σ), δ ,σ)

The changes made to semantic domains and meaning functions for tree in-
heritance solve the problems of modularity, but at the cost of extra complexity.
Each object is now a tree-structured entity, with each sub-object corresponding
to a node in the (unfolded) inheritance graph.

An alternative route to modelling the semantics of tree inheritance might
be to make each sub-object a full object in its own right, i.e., with its own
Oop. Such a system has already been described: namely, the prototype-based
system discussed in §3.12. A prototype-based system can imitate a tree in-
heritance structure by using delegation. To do this, every object’s prototype is
an object representing its class. In addition to its own instance variables, an
object has one instance variable for each of its class’s parents, and this instance
variable refers to the corresponding sub-object in the tree inheritance model.
Any inherited message is delegated to the corresponding sub-object; because
no change in the structure or behaviour of an object can take place at run-time,
the appropriate delegation methods can be inherited from the class object, and
no errors owing to missing attributes can occur.

4.4 The Interaction between Inheritance and
Encapsulation

Inheritance introduces a new dimension to the problem of encapsulating the
internals of an object; a class’s children are now also clients of the class, and,

according to sound engineering practice, should be insulated from changes in
the implementation of their ancestors. Unfortunately, this causes something of
a dilemma: the purpose of inheritance is that one class may inherit another’s
implementation, and modify it in some way; how can this be achieved if the
implementation is hidden?

The solution is to note that a class presents two, different interfaces to
its users: one to other classes, sending messages to its instances, and one to
its children. The purpose of the former interface is to define what an object
does without revealing the details of its implementation. The purpose of the
latter is to provide a package of re-usable parts, with carefully selected features
changeable in subclasses.

The task of the class designer is to choose the best compromise between
these two aspects. On the one hand, instances of her class must behave in a
way useful to other objects, without revealing details of their internal behaviour
via their message protocol. On the other hand, the message protocol must be
chosen in such a way that by selectively overriding part of it, new and useful
classes can be derived.

These separate aspects of class design should be supported by the language.
Thus far, support for the first aspect, namely protection and encapsulation from
other objects, has been described, and tree inheritance, which begins to support
encapsulation, introduced. The rest of this section discusses other language
features for the support of modular inheritance.

4.4.1 Private and Subclass-Visible Methods
Tree inheritance took the first steps towards encapsulation by hiding inherited
instance variables. To gain access to its inherited parts, an object has to send
messages to itself. Nevertheless, there is no way of preventing other objects
invoking these methods. This is unsatisfactory: it leads to unwanted breaches
of encapsulation, by necessitating the definition of publicly-accessiblemethods
that do not form part of the external interface of an object. A language that
forces the designer along this route is flawed; it does not allow a class to satisfy
the following principle:

The Principle of Class Encapsulation The internal construction of an object
or class should not be visible outside that object or class unless the object

or class chooses to make it so.

To distinguish between the external messages, and messages that can be in-
voked by subclasses, the idea of subclass-visible methods is introduced (see
[SCB+86], for example). A subclass-visible method can be invoked using self
or super, but in no other way. This enables a class to present a wider interface
to its children than to other classes.

Additionally, the class designer should also be able to categorise some
methods as private, i.e., invisible to all other classes, including subclasses.
Private methods enable a programmer to decompose operations into smaller
operations without compromising encapsulation. For example, if two methods
A and B have a common partC, thenC should be a separate method. Invocation
of C by other objects or subclasses at inopportune moments may compromise
integrity, so C should be invisible to them.

So important is the idea of decomposition to modern programming tech-
niques, that it is enshrined in the following principle:

The Principle of Decomposition The programmer should always be able to
decompose her problem into methods and/or objects without compro-
mising the principles of encapsulation.

To model these three categories ofmethods, namely public, subclass-visible
and private methods, the abstract syntax is extended so that every method is
tagged with its type (cf. pp. 82, 79):

Class body′ :: Instvars : Id-set
Methods : Method map′
Parents : Parent classes

Method desc′ :: Method : Method body′ ∪ Primitive method
Type : Method type

Method type = PRIVATE, SUBV, PUBLIC

If the locally-defined private, subclass-visible, and public selectors of a
class are denoted by privL(c), svL(c) and pubL(c) (where these three sets are
disjoint), then the complete interface of c, including all inherited methods, is:

priv(c) = privL(c)
sv(c) = svL(c) ∪ sv(c′) | c′ ∈ parents(c) − privL(c) − pubL(c)
pub(c) = pubL(c)∪ pub(c′) | c′ ∈ parents(c) − privL(c) − svL(c)

Changes to Pre-processing

Each different type of method is processed separately; inherited methods are
combined with local methods according to the rules above.

Privacy is enforced in the context conditions by not passing selectors of pri-
vate methods to subclasses. Nevertheless, this does not prevent external access
to private and subclass-visible methods from other objects. Because messages
are dynamically bound, this restriction must be enforced in the meaning func-
tions, and hence the processed abstract syntax also includes the method type
(cf. p. 95):

Method desc :: Original class : Access path
Method : Method body∪ Primitive method
Type : Method type

all methods of :Class name × Class map′ → Method map
all methods of (class id, class map)

local meths type(class id, class map, PRIVATE)
∪ all meths type(class id, class map, PUBLIC)
∪ all meths type(class id, class map, SUBV)

local meths type :Class name × Class map′ ×Method type →
Method map

local meths type(class id, class map, type)
sel mk-Method desc([],

Method(Methods(class map(class id))(sel)), type)
| Type(Methods(class map(class id))(sel)) = type

all meths type :Class name × Class map′ ×Method type →
Method map

all meths type(class id, class map, type)
let other types = Method type − type in
let others = dom local meths type(class id, class map, t)

| t ∈ other types in
(others inh meths type(class id, class map, type))

† local meths type(class id, class map, type)

inh meths type :Class name × Class map′ ×Method type →
Method map

inh meths type(class id, class map, type)
∗ methods inherited f rom(p, class map, type)

| p ∈ parents(class id, class map)

methods inherited f rom :Class name × Class map′
×Method type → Method map

methods inherited f rom(class id, class map, type)
let meth map = all meths type(class id, class map, type) in
sel prepend class(class id, meth map(sel))

| sel ∈ dommeth map

Changes to Context Conditions

WFProgram is modified so that the methods in a class only have access to
inherited subclass-visible and public methods (cf. p. 92):

WFProgram :Program′ →
WFProgram class map

non circular(class map)
∧ ∀class id ∈ dom class map ⋅

let par = parents(class id, class map) in
let inh selectors =

p domall meths type(p, class map, PUBLIC)
∪ domall meths type(p, class map, SUBV)

| p ∈ par in
let θ =

mk-CCEnv(, , , dom class map, inh selectors) in
par ⊆ dom class map
∧ non conf licting methods(class id, par, class map)
∧WFClass class map(class id) θ

Changes to Semantic Domains and Meaning Functions

The denotation of a class has been a function that interprets messages (pp. 36,
38); now the domain of class denotations must be extended to distinguish be-
tween messages sent from the object denoted by self, and messages from other
objects. Note that the context conditions and pre-processing section ensure
that a class cannot gain access to its parents’ private methods.

Class den = Selector m Method den

Method den = Public method∪ Private method

Method response = Oop × (Oop∗) × Object memory →
Oop × Object memory

Public method :: Meth : Method response

Private method :: Meth : Method response

MMethod :Method desc → SEnv → Method den
MMethod mm ρ

let m = Method(mm) in
let md = if m ∈ Primitive method

then m
else let ρ′ = µ(ρ, Class Original class(mm)) in

MMethod body m ρ′
in

if Type(mm) ∈ PRIVATE, SUBV
then mk-Private meth(md)
else mk-Public meth(md)

The perf orm function makes the necessary check to ensure that external
messages cannot invoke private methods (cf. p. 42):

perf orm : Selector × Program den
×Oop × Oop∗ × Object memory ×

→ Oop × Object memory
perf orm(sel, pd, rcvr, args,σ , f rom self)

let class = class(rcvr,σ) in
if sel ∈ public selectors(class, pd)
∨ f rom self ∧ sel ∈ private selectors(class, pd)

then method(sel, class, pd)(rcvr, args,σ)
else message not understood(sel, ρ,

class, rcvr, args,σ , f rom self)

private selectors :Class name × Program den→ Selector-set
private selectors(class, pd)

sel ∈ dompd(class) | pd(class)(sel) ∈ Private method

public selectors :Class name × Program den→ Selector-set
public selectors(class, pd)

sel ∈ dompd(class) | pd(class)(sel) ∈ Public method

method :Selector × Class name × Program den→
Method response

method(sel, class, pd) Meth(pd(class)(sel))

Note that the message not understood function now serves two purposes:
it invokes an error response when a message is received that has no associated
method, and also handles messages that are received from other objects that
are attempting to invoke private methods.

There are two approaches to ensuring that an object can only invoke its
own private methods. First, one could insist that a private method could only
be invoked in response to a message sent to self, i.e., enforce the restriction at
a syntactic level. Alternatively, a check could be made at run-time to see if the
sender and the receiver were the same object. The former requires a change
to the MExpression meaning function, which inspects the syntax of the send
expression (cf. p. 41):

MExpression :Expression → SEnv → DEnv →
Object memory →

Oop × DEnv ×Object memory
MExpression mk-Message(rcvr, sel, arglist) ρδσ

let (rcvr oop, δ ′,σ′) = MExpression rcvr ρδσ in
let (actuals, δ ′′,σ′′) = MExpression list arglist ρδ ′σ ′ in
let (result,σ′′′) = perf orm(sel, PD(ρ), rcvr oop, actuals,σ′′,

rcvr = SELF) in
(result, δ ′′,σ′′′)

The latter is based on the values of the current receiver and the receiver of
the message:

MExpression mk-Message(rcvr, sel, arglist) ρδσ
let (rcvr oop, δ ′,σ′) = MExpression rcvr ρδσ in
let (actuals, δ ′′,σ′′) = MExpression list arglist ρδ ′σ ′ in
let (result,σ′′′) = perf orm(sel, PD(ρ), rcvr oop, actuals,σ′′,

rcvr oop = Rcvr(δ ′′)) in
(result, δ ′′,σ′′′)

As no current language distinguishes between private and public methods
(to the best of the author’s knowledge), there is no experience to suggest which
of these forms will be found superior in practice. Nevertheless, the former
semantics suggest both simpler proof rules (based on syntactic characteristics),
and the potential for simpler, more efficient implementation.

4.4.2 Static Binding of Messages, Revisited
The use of private methods allows a class designer to decompose her methods
without fear that the sub-methods will be invoked from other classes, but this
does not prevent a subclass from re-implementing a private method, thereby
capturing all messages sent to self, intended to invoke the private method in
the superclass. This would allow a subclass to intercept a message at a point
when an instance of the class was not in a well-defined state (i.e., when an
invariant on the instance did not hold). To avoid this, the form of statically-
bound message sends is extended so that methods are called directly, not only
in superclasses but also in the same class. In effect, when a class designer
designates a method as private, she is saying, “I don’t want anyone else to
invoke this method”; when statically binding a message she is saying, “I want
thismethod to be invoked by thismessage.” Both of these facilities are required
to uphold the Principles of Class Encapsulation and Decomposition.

A new form of message-send expression is introduced, the Self send:4

Expression′ = Expression list′ ∪ Assignment′ ∪ Object name
∪Message′ ∪ Literal object∪ New object

∪ Super send ∪ Self send

Self send :: Sel : Selector
Args : Expression′∗

A Self send can be converted into a Static send by tagging it with the
name of the class of its enclosing method. This is similar to the processing
of Super sends in a single-inheritance hierarchy (§4.2), except that the current

4The concrete syntax used in Smalltalk for messages sent to self and Super sends is self foo:
bar and super foo: bar; a suitable extension for Self sends might be here foo: bar, for example.

class, instead of the parent class, is propagated down through the processing
functions:

PExpression :Expression′ → Class name → Expression
PExpression expr this class

cases expr of
mk-Super send(s, a)→…
mk-Assignment(l, r) →…
mk-Message(r, s, a) →…
mk-Self send(s, a) → mk-Static send(s,

PExpression list a this class,
this class)…

end

The well-formedness of a Self send, like that of a Super send, depends on
whether a message response is defined for the selector:

WFExpression :Expression′ → CCEnv →
WFExpression mk-Self send(sel, args) θ

lenargs = nargs(sel)
∧ sel ∈ My selectors(θ) ∪ rng Inherited selectors(θ)
∧ ∀arg ∈ rngargs ⋅WFExpression arg θ

CCEnv :: Instvars : Id-set
Params : Id-set
Temps : Id-set
Classes : Class name-set

Inherited selectors : Class name m Selector-set
My selectors : Selector-set

Note that CCEnv is augmented with a My selectors component to record
which selectors can be used in a Self send (cf. p. 84). This component is set
up inWFProgram (cf. p. 103):

WFProgram :Program′ →
WFProgram class map

non circular(class map)
∧ ∀class id ∈ dom class map ⋅

let par = parents(class id, class map) in
let inherited selectors =

p domall meths type(p, class map, PUBLIC)
∪ domall meths type(p, class map, SUBV)

| p ∈ par in
let sels = local selectors(class id, class map) in
let θ = mk-CCEnv(, , , dom class map,

inherited selectors, sels) in
par ⊆ dom class map
∧ non conf licting methods(class id, par, class map)
∧WFClass class map(class id) θ

local selectors :Class name × Class map′ → Selector-set
local selectors(class id, class map)

domMethods(class map(class id))

4.5 Inheritance and Primitive Classes
Some of the primitive classes and methods described in Chapter 3 are affected
by the presence of inheritance. First, most of the primitive classes cannot be
usefully subclassed, because instances of primitive classes are usually created
by evaluating literal expressions; therefore, there is no mechanism for creating
instances of subclasses. The only exception among the classes mentioned in
Chapter 3 is the primitive class of indexable objects; instances are created by
a primitive, which would be inherited by subclasses.

Indexable objects show up the deficiencies (mentioned in §4.3.3) in the
graph and linear inheritance schemes. If a class’s instances may have index-
able fields, then so should its childrens’ instances, but extending the simple
definition of Plain object used for graph and linear inheritance results in in-
dexable fields inherited frommultiple parents being aliased to each other. Only

the tree inheritance scheme, with separate name spaces for separate inherited
parts, can cope with inheritance of indexable fields properly.

4.6 Summary
This chapter has augmented the model of Chapter 3 with several different in-
heritance schemes. Single inheritance poses no problems, merely requiring
a separate processing stage to transform inheritance-based programs into ones
without inheritance. Two multiple inheritance schemes, graph and linear inher-
itance, can also be handled in this way, but both of these schemes have prob-
lems as secure structuring mechanisms. Tree inheritance solves these prob-
lems, but requires a change in the semantic domains. To maintain the desired
degree of encapsulation, method-hiding and message-hiding features are also
added to the language, being smoothly incorporated into the tree inheritance
semantics.

Chapter 5

Control Structures

As Will Rogers would have said, “There is no such
thing as a free variable.”

Alan Perlis

Chapter 3 introduced a simple model of object-oriented languages, and
Chapter 4 extended the model to include inheritance. The reader may have
observed that the languages defined in these chapters did not have any of the
usual features for control, namely branching and looping structures. Conven-
tional control structures such as “if” and “while” statements can be added to the
language in the usual manner, as in [Sto77]; there is no unexpected interaction
between them and the object-oriented features.

This chapter does not describe conventional control structures, but takes a
different approach: it describes the object-oriented control structures provided
by Smalltalk-80.1 In addition to the message-sending mechanism described in

1To the author’s knowledge, no other object-oriented language has adopted these structures.
This is understandable in “hybrid” languages such as Objective-C or the Lisp “family” which have

110

Chapter 3, Smalltalk provides only one other primitive control structure; all
others can be implemented using it. This takes the form of “blocks”,2 which
can be considered to be “anonymous methods” or “deferred code.” For an
introduction to blocks, the reader is referred to [GR83].

Before describing blocks in more detail, it should be pointed out that the
language of Chapter 3 is computationallycomplete. The semantics of message-
passing are such that they can be used to provide recursion, and hence iteration,
and also branching via dynamic binding. For example, the factorial function
on natural numbers can be defined thus (using Smalltalk concrete syntax3):

class Integer
factorial

self isZero restOfFactorial: self

class True
restOfFactorial: n

1

class False
restOfFactorial: n

n * (n - 1) factorial

The isZeromethod is assumed to invoke a method that returns true if its receiver
is zero, false if non-zero. As true and false are instances of different classes,
namely True and False, a different method can be invoked depending on the
outcome; thus dynamic binding is used to implement conditional branches.
This example should also show that this technique is inelegant for expressing
non-trivial algorithms; much of the code is pushed into “continuation”methods
in the boolean classes.

their own control structures, but less so in new, pure, object-oriented languages. The most likely
reason that the author can suggest for this is that a certain amount of folklore has built up around
these features that considers them to be inefficient.

2A most unfortunate choice of name, given that two decades of imperative programming tra-
dition have used the name to mean something else.

3This chapter assumes more familiarity with Smalltalk syntax than previous chapters.

5.1 Blocks
Blocks are literals that denote objects which are executable pieces of code.
In one view, they can be considered to be anonymous methods. This is clear
when the factorial function is rewritten using blocks:

class Integer
factorial

self isZero
ifTrue: [1]
ifFalse: [self * (self - 1) factorial]

The blocks are the code fragments delimited by square brackets. A block
is executed by sending it a message that is bound to a special primitive (the
value primitive). This is achieved in the above case by having an ifTrue:ifFalse:
message defined in the True and False classes:

class True
ifTrue: trueBlock ifFalse: falseBlock

trueBlock value

class False
ifTrue: trueBlock ifFalse: falseBlock

falseBlock value

An obvious difference between the method-based factorial definition and the
block-based version is that the recursive code in the false “branch” uses differ-
ent variable names to refer to the integer argument: in the method version an
argument, n, refers to the integer, while self is bound to the receiver, namely
false;4 in the block version self refers to the integer. This illustrates that the
environment of the code within the block is the same as the environment of its
enclosing text: self and the instance variables of self are in scope. Therefore,
the block must be bound to the environment of its enclosing method sometime
during the execution of that method, forming a closure, with no free variables.

4To re-iterate, false denotes the sole instance of the class False.

Objects representing bound blocks are instances of a class Closure.5
The analogy of blocks as anonymous methods goes even further: a block

may have a number of parameters and temporaries.6 Parameters are denoted
using a preceding colon (to mirror the definition of parameters in methods),
and temporaries are enclosed between vertical bars, just as in methods:

methodWithParameter: aParam
| temp1 temp2 |
... [:param1 :param2 | blocktemp |

... "body of block with two parameters"]

A block with parameters is activated using variants of the value primitive:
value: takes one argument, value:value: takes two, etc., and valueWithArgu-
ments: takes one argument, which is an Array (see §3.10.4) of arguments to
the value primitive.

The languages of Chapters 3 and 4 are extended to include blocks by ex-
tending the abstract syntax of literals thus: 7

Literal object = …∪ Block body

Block body :: Params : Ulist(Id)
Temps : Id-set
Expr : Expression

Note that the abstract syntax of a block is identical to that of aMethod body
(cf. p. 33).

The well-formedness rule for blocks is the same as that for methods, except
that a modified environment is used:

5Smalltalk aficionadoswill know that this is not the same as in Smalltalk—the reason for this
will be explained in succeeding sections.

6The Smalltalk-80 language does not allow blocks to have temporaries. The reason for this
is a rather involved technical and historical accident that need not be explained here—the inter-
ested reader should consult [Wol87]. This is likely to be changed as part of the current effort to
standardise Smalltalk.

7As the semantics of blocks and inheritance are independent, the primes used in Chapter 4 to
denote unprocessed syntax will be dropped.

WFExpression mk-Block body(params, temps, expr) θ
let θ′ = µ(µ(θ, Params Params(θ)∪ rngparams),

Temps temps) in
WFExpression expr θ′

The restriction ensures that any temporaries in the enclosing text are not
accessible within the block—the reason for this will be explained in §5.1.1.

The semantic domain of primitive objects is extended to include the deno-
tations of blocks (or, to be exact, closures):

Primitive object = …∪ Block den

Block den = Oop × (Oop∗) × Object memory →
Oop × Object memory

Again, there is a similarity between methods and blocks (cf. p. 36).
The meaning function for a block expression creates an object (an instance

of a primitive class, Closure) that contains the denotation of the block:

MExpression :Expression → SEnv → DEnv →
Object memory →

Oop × DEnv ×Object memory
MExpression b ρδσ (for b ∈ Block body)

let (closure,σ′) =
create(mk-Object(Closure,

MBlock body b ρδ),σ) in
(closure, δ ,σ′)

MBlock body :Block body→ SEnv → DEnv → Block den
MBlock body mk-Block body(params, temps, expr) ρδ

λclosure, args,σ ⋅
if lenparams ≠ lenargs
then block arg error(ρ, δ , closure, args,σ)
else let bindings = Params(δ)

† bind args(params, args) in
let δ ′ =

mk-DEnv(Rcvr(δ), bindings, initialise(temps)) in
let (result, δ ′′,σ′) = MExpression expr ρδ ′σ in
(result,σ′)

Points to note:

• Unlike the meaning functions for other literals, the meaning of a block
expression always results in the creation of a new object. This is because
there is no way to determine, in general, if a new closure is equivalent
to a pre-existing closure in the object memory.

• When activated, the block must check that it has been supplied with the
correct number of arguments. If not, the block arg error function is
invoked; in Smalltalk this results in an error message being sent. An al-
ternative strategy might be to ignore extra arguments, and supply default
values for missing arguments.

The value primitive is defined on instances of class Closure. It applies the
denotation of the closure to its arguments:

value primitive :Primitive method
value primitive

λclosure, args,σ ⋅ body(closure,σ)(closure, args,σ)

5.1.1 Access to Non-local Variables from within Blocks
The dynamic environment of a block as constructed inMBlock body includes
the arguments and temporaries of the block, and arguments of the enclosing

method (or block; blocks can be nested), but not non-local temporaries. The
reason for this is that access to non-local temporaries introduces a form of
sharing that is extremely complicated to model formally.

Access to non-local temporaries means that a block must be able to alter
the dynamic environment of its enclosing method. However, because closures
are first-class objects they have an unbounded lifetime, which can exceed the
lifetime of the activation that created them. Hence, to model access to non-
local temporaries, dynamic environments have to be maintained in a structure
indefinitely, and passed around as part of the long-term store with the Object
memory.

Although modelling access to non-local temporaries is complex, it is still
possible (the problem is the same as that in an imperative language with clo-
sures and lexical scoping; a static chain of closures, parallel to the lexical
scoping, is constructed). However, a much simpler alternative is espoused in
[Wol87]. This is to treat access to non-local temporaries in the same way as
access to non-local arguments, fixing the value of the temporary variable when
the block is bound. The block has read-only access to non-local temporaries.
Consider the following fragment of code:

sel: arg1
| t1 |
t1← "expression 1".
… "B1" [:arg2 | t2 |… "p1"

"B2" [: arg3 | t3 |… "p2"]]

BlockB2 is lexically nested within blockB1. Blocks B1 and B2 are boundwhen
they are referenced in an expression, to the environment that is in use at the
time. Thus, block B1 has access to arg1 and t1 as well as to its own argument
and temporary variable. The value of arg1 is the same as that in the enclosing
method, while the value of t1 is whatever it was when B1 was bound, namely
the value of "expression 1". The value of t1 is constant throughout the lifetime
of the bound block B1, but the code outside can still, of course, modify its own
copy of t1. Similarly, block B2 has read-only access to the same value of t1,
and also read-only access to arg2 and t2, using the values that were in force at
the time B2 was bound. It should be emphasised again that non-local variables
are equivalent to arguments: their value does not change during the lifetime of

the closure.
To model this formally, a minor change ismade toMBlock body (cf. p. 115):

MBlock body :Block body→ SEnv → DEnv → Block den
MBlock body mk-Block body(params, temps, expr) ρδ

λclosure, args,σ ⋅
if lenparams ≠ lenargs
then block arg error(ρ, δ , closure, args,σ)
else let bindings = Temps(δ)

† Params(δ) † bind args(params, args) in
let δ ′ =

mk-DEnv(Rcvr(δ), bindings, initialise(temps)) in
let (result, δ ′′,σ′) = MExpression expr ρδ ′σ in
(result,σ′)

With this model of computation, a shared non-local variable can be sim-
ulated using an extra object (see [Wol87] for details). In short, conventional
Smalltalk code that uses shared non-local variables can be transformed into
equivalent code that uses extra objects to provide the sharing. For example,
this code:

foo
| t |
t← "value1".
… [… t← "value2"…]

becomes:
foo

| t |
t← Indirection on: "value1".
… [… t value: "value2"…]

This transformation can be made by the programmer or by the compilation
system.

5.1.2 Uses of Closures
Closures can also be used as capabilities [Fab74] for accessing private and
subclass-visible methods. By enclosing a send to itself within a block, an
object can give to other objects limited and controlled access to its private
methods.

5.2 Continuations
The closures described thus far represent deferred actions. When activated, a
closure performs its actions, and then returns control to the method that acti-
vated it. The basic control structure, therefore, is that of procedure call and
return.

In this section the repertoire of abilities of blocks is extended by allowing
them to exit in a different way. A conventional closure can be thought of
as being passed a continuation sequence when activated, and then exiting by
handing control to the continuation sequence. In this extended form, the block
is given the current continuation sequence when it is bound, activating that
sequence when it exits, rather than the one passed to it when activated. This
action corresponds to the behaviour of Smalltalk blocks that exit with a “return
operator” (). Control is handed back to the method in which the block was
bound (the so-called home context). For example:

m1
"some condition" ifTrue: [self].
... "rest of method"

m2
"some condition" ifTrue: [self].
... "rest of method"

In method m1, when the block is activated it returns the value of self to the
place where it was activated. In method m2, if the condition is true the value
of self is returned to the method that caused the activation ofm2 and the binding
of the block; the "rest of method" is not executed.

5.2.1 Formal Semantics
To model the new form of blocks, the method of definition used thus far,
i.e., so-called direct semantics, has to be abandoned. Because it uses func-
tion composition to build denotations, only function-like control structures can
be modelled [Sto77]. Instead, continuation semantics are needed, with each
meaning function being passed an additional argument (known as the contin-
uation), representing the “natural” sequence of actions to be performed after
those specified by the current program fragment. To model an unusual control
structure, the meaning function for the control structure can choose to ignore
the continuation that it has been given, and use a different one.

The conversion from the existing definitions to continuation-based seman-
tics is, for the most part, straightforward. Meaning functions of the form:

M: S→ SEnv → DEnv → Object memory →
Oop ×DEnv ×Object memory

become:

Mc : S→ SEnv→ DEnv → Object memory → ECont →
Oop ×Object memory

Mc m ρδσε ε(M m ρδσ)

where

ECont = Oop ×DEnv ×Object memory → Oop ×Object memory

(The c suffix will be dropped from the definitions that follow.) Note that the
original functions return a dynamic environment for use in future computation,
whereas in the continuation version it is consumed by the continuation ε, and
only the result Oop and Object memory are used as “answers.”

For example, the meaning function for an Assignment changes from:

MExpression :Expression → SEnv → DEnv →
Object memory →

Oop × DEnv ×Object memory
MExpression mk-Assignment(id, rhs) ρδσ

let (result, δ ′,σ′) = MExpression rhs ρδσ in
cases id of
mk-Temp id(t) → (result, update temp(t, result, δ ′),σ′)
mk-Inst var id(iv)→ (result, δ ′,

update inst var(iv, Rcvr(δ),
result, Class(ρ),σ′))

end

to

MExpression :Expression → SEnv → DEnv →
Object memory →

ECont→ Oop × Object memory
MExpression mk-Assignment(id, rhs) ρδσε

MExpression rhs ρδσ
(λresult, δ ′,σ′ ⋅
cases id of
mk-Temp id(t) → ε(result,

update temp(t, result, δ ′),σ′)
mk-Inst var id(iv)→ ε result, δ ′,

update inst var(iv, Rcvr(δ ′),
result, Class(ρ),σ′)

end)

A complete set of formulas can be found in Appendix B.
Once the conversion has been made, a few modifications are necessary to

support the extended form of blocks (which, when bound, shall hereafter be
called “continuations”). First, the syntax changes are presented:

Literal object′ = Block body′ ∪ Cont body′ ∪ Int literal∪…

Cont body′ :: Params : Ulist(Id)
Temps : Id-set
Expr : Expression′

Note that the abstract syntax of a continuation is the same as that for a clo-
sure (p. 113). The context conditions are also similar, as are the pre-processing
functions; they can be found in Appendix B.

The following change is made to the semantic domain of methods:

Method den = MCont→ Oop × (Oop∗) × Object memory →
Oop × Object memory

Block den = Method den

The types of continuations used are these:

MCont = Oop × Object memory → Oop ×Object memory

ECont = Oop × DEnv × Object memory → Oop ×Object memory

LCont = (Oop∗) × DEnv × Object memory →
Oop × Object memory

The ECont continuation is used as the continuationof an expression, whereas
the MCont continuation is used as the continuation of a method—it does not
use the dynamic environment. The LCont type is used as a continuation for
message-sends, where a number of arguments are passed to a method.

The following auxiliary functions convert between EConts andMConts by
ignoring or inserting into the continuation a dynamic environment:

ignore :MCont→ ECont
ignore(ν) λr, δ ,σ ⋅ ν(r,σ)

insert :DEnv → ECont→ MCont
insert (δ)(ε) λr,σ ⋅ ε(r, δ ,σ)

A continuation block does not execute the continuation that it is passed
when activated, but the continuation of the method in which it was bound. This
continuation is recorded in the dynamic environment of the method (cf. p. 38):

DEnv :: Rcvr : Oop
Params : Id m Oop
Temps : Id m Oop
Cont : MCont

The Cont field of a dynamic environment is set up in the meaning function
for methods (cf. p. 39):

MMethod body :Method body→ SEnv → Method den
MMethod body mk-Method body(params, temps, expr) ρ

λν ⋅ λrcvr, args,σ ⋅
let bindings = bind args(params, args) in
let δ = mk-DEnv(rcvr, bindings, initialise(temps), ν) in
MExpression expr ρδσ ignore(ν)

The meaning functions for closure and continuation blocks illustrate the
difference between them: a closure block executes the continuation that it was
passed when activated, while a continuation block executes the continuation
from its dynamic environment:

MExpression b ρδσε (for b ∈ Block body)
let obj = mk-Object(Closure, MBlock body b ρδ) in
let (closure,σ′) = create(obj,σ) in
ε(closure, δ ,σ′)

MExpression c ρδσε (for c ∈ Cont body)
let obj = mk-Object(Continuation, MCont body c ρδ) in
let (closure,σ′) = create(obj,σ) in
ε(closure, δ ,σ′)

MBlock body :Block body→ SEnv → DEnv → Block den
MBlock body mk-Block body(params, temps, expr) ρδ

λν ⋅ λclosure, args,σ ⋅
if lenparams ≠ lenargs
then block arg error(ρ, δ , closure, args,σ , ν)
else let δ ′ = update vars(δ ,

Temps(δ) † Params(δ) †
bind args(params, args),

initialise(temps)) in
MExpression expr ρδ ′σ (ignore ν)

MCont body :Cont body→ SEnv → DEnv → Block den
MCont body mk-Cont body(params, temps, expr) ρδ

λν ⋅ λclosure, args,σ ⋅
if lenparams ≠ lenargs
then block arg error(ρ, δ , closure, args,σ , ν)
else let δ ′ = update vars(δ ,

Temps(δ) † Params(δ)
† bind args(params, args),

initialise(temps)) in
MExpression expr ρδ ′σ ignore(Cont(δ ′))

update vars :DEnv × Id m Oop × Id m Oop→ DEnv
update vars(δ , params, temps)

µ(µ(δ , Params params), Temps temps)

The primitive for activating blocks is the same for both kinds:

value primitive :Primitive method
value primitive

λν ⋅ λclosure, args,σ ⋅ body(closure,σ)ν(closure, args,σ)

5.2.2 Other Types of Block
The continuationmodel of blocks described in §5.2 is a more “generous” model
than actually provided by Smalltalk, in that some programs that have valid
meanings according to the model of §5.2 cause run-time errors in Smalltalk. In
Smalltalk, dynamic environments are first-class objects (called contexts), and
they encode run-time state information (such as the bindings within a DEnv),
and operational information (such as an instruction pointer). Moreover, the
Smalltalk Virtual Machine does not allow one context to return control to a
second when the second has already returned control to a third. Hence, activa-
tion of a block such as that returned from the following method always causes
a run-time error:

errorBlock
[self]

This is because the home context of the block has already exited when the
block is activated.

This restricted form of continuation-blocks can be modelled using a less
general form of semantic description than continuations: the “exit” semantics
of VDM provide sufficient descriptive power [BJ82]. In an exit semantics,
the meaning functions from a direct semantics are modified to return an extra
result, which indicates whether that particular construct, or one invoked by
it, caused an abnormal exit. Furthermore, the exit value also indicates where
processing should resume.

To include the exit model of blocks into the direct semantics of Chapter 3,
each dynamic environment is tagged with a unique identifier when it is created,
and a set of active environment identifiers is maintained as part of the store.
When a method returns, its identifier is removed from the active set, and if
another attempt is made to activate its dynamic environment (by returning to
it), an error is raised.

This scheme requires that:

• dynamic environments are tagged with identifiers,

• active identifiers are kept in the object memory,

• denotations of methods and expressions are changed to include exit val-
ues, and

• exit values are checked when a dynamic environment is exited.

DEnv :: Rcvr : Oop
Params : Id m Oop
Temps : Id m Oop

Id : DEnv id

Object memory :: Objects : Oop m Object
Active : DEnv id-set

Method den = Oop ×Oop∗ × Object memory →
[ExitV] × Oop ×Object memory

ExitV = DEnv id
When a “normal” exit occurs, the exit value is nil; otherwise it is the identifier
of the environment in which the continuation block was bound.

MMethod body :Method body→ SEnv → Method den
MMethod body mk-Method body(params, temps, expr) ρ

λrcvr, args,σ ⋅
let (d id,σ′) = make new denv id(σ) in
let bindings = bind args(params, args) in
let δ = mk-DEnv(rcvr, bindings, initialise(temps), d id) in
let (exitv, result, δ ′,σ′′) = MExpression expr ρδσ ′ in
let σ′′′ = remove id(d id,σ′′) in
if exitv = d id
then (nil, result,σ′′′)
else (exitv, result,σ′′′)

make new denv id () new id:DEnv id
ext wr σ : Object memory
post new id ∉ Active(σ)

∧ σ = µ(σ , Active Active(σ)∪ new id)

remove id :DEnv id × Object memory → Object memory
remove id(d id,σ) µ(σ , Active Active(σ) − d id)

MCont body : SEnv → DEnv → Block den
MCont body mk-Cont body(params, temps, expr) ρδ

λclosure, args,σ ⋅
if lenparams ≠ lenargs
then block arg error(ρ, δ , closure, args,σ)
else let δ ′ = update vars(δ ,

Temps(δ) † Params(δ)
† bind args(params, args),

initialise(temps)) in
let (exitv, result, δ ′′,σ′) =

MExpression expr ρδ ′σ in
if exitv ≠ nil
then if Id(δ ′′) ∈ Active(σ′)

then (exitv, result,σ′)
else return error(result, d id,σ′)

else (Id(δ ′′), result,σ′)

Atomic meaning functions (those that do not invoke other meaning func-
tions) must be modified to generate a normal exit value; non-atomic meaning
functions must check for exit values from their component constructs. For ex-
ample, the meaning functions for assignment and sequential composition are
as follows (cf. p. 40):8

8Muchof the extra notational overheadrequired to check exit values can be relieved by defining
suitable combinators, as in [BJ82].

MExpression :Expression → SEnv → DEnv →
Object memory →

[ExitV] × Oop ×DEnv ×Object memory
MExpression mk-Assignment(id, rhs) ρδσ

let (exitv, result, δ ′,σ′) = MExpression rhs ρδσ in
if exitv ≠ nil
then (exitv, result, δ ′,σ′)
else cases id of

mk-Temp id(t) → (nil, result,
update temp(t, result, δ ′),σ′)

mk-Inst var id(iv)→ (nil, result, δ ′,
update inst var(iv, Rcvr(δ),

result, Class(ρ),σ′))
end

MExpression mk-Expression list(exprs) ρδσ
let (exitv, oop, δ ′,σ′) = MExpression hd exprs ρδσ in
if lenexprs = 1 ∨ exitv ≠ nil
then (exitv, oop, δ ′,σ′)
elseMExpression mk-Expression list(tlexprs) ρδ ′σ ′

In fact, this model is not an accurate model of Smalltalk block semantics, as
a non-local return “unwinds the stack” between the block and its home context,
rendering all intermediate contexts inaccessible; in Smalltalk, the intermediate
contexts are still available for use. This can be modelled using modifications
to the earlier continuation semantics.

5.3 Dynamic Environments as First-ClassObjects
As was mentioned in the previous section, Smalltalk treats every dynamic en-
vironment as a first-class object, called a context. This has a number of advan-
tages:

• it simplifies the structure ofObject memory so that again it has only one
structured component,

• each context gains its own identity “for free” so that no special domain
of dynamic environment identifiers is required, and

• extra primitives can interrogate contexts facilitating the construction of
tools such as debuggers entirely within the language.

It is straightforward to extend the domain of primitive objects to include
contexts:

Primitive object = …∪ Context

Context :: Sender ctx : Oop
Rcvr : Oop

Params : Id m Oop
Temps : Id m Oop

Alternatively, a Plain object can be used to represent a context if the in-
stance variable identifiers of the context are suitably named to avoid conflicts.
For example, arguments might be prefixed with arg, temporaries with temp,
and the receiver and sender context fields named by self and sender. However,
because all contexts have different instance variable names, no class can be
defined to access them. Yet another alternative is to access the arguments and
temporaries using indices (i.e., use indexable objects).

An additional component of the object memory identifies which object is
the “current” or “active” context:

Object memory :: Objects : Oop m Object
Active : Oop

This componentmust be modifiedwhen a message is sent or when a method
or block returns. In effect, the control stack is explicitly represented in the
object memory rather than implicitly in the function calls used in the semantic
description.

5.4 Primitives
Other useful block primitives can be defined in addition to the “value” primi-
tive (pp. 115, 123). Of the primitives in Chapter 3, only the equivalence and

oopOf primitives (§3.9.1) are applicable to blocks, but the argument in §3.9.1
that equivalence between primitive objects should be based on equality of the
underlying objects cannot apply to blocks, as showing that two functions are
equal is generally undecidable. Also, primitives can be provided to access the
internal state of a context (e.g., for debugging).

5.5 Concurrency
As the introduction stated, no attempt is made in this thesis to integrate con-
current features into the semantics. Nevertheless, it can be pointed out that
are three obvious points at which concurrency could be introduced. The first
occurs when evaluating a block; a primitive can be introduced that evaluates
a block in parallel—this is the fork facility in Smalltalk. Second, a message
send may be performed concurrently, so that the method invoked by the mes-
sage runs in parallel with sending method—this is the actor approach (§2.5.1).
The third approach is to have each object as an independent process, the con-
currency being introduced by the “new” primitive—this is how POOL works
(§2.4).

Regarding the semantic definition of these features, the difficulties lie not
in the introduction of concurrency, but in the description of synchronisation
and interference. Again, there are several approaches. One is to allow multi-
ple processes to access an object simultaneously, interleaving accesses to the
object’s instance variables (the Smalltalk approach). Another is to treat each
object as a monitor (cf. [Hoa74]), queuing processes at each object (the POOL
approach). And as in the actor model, one can ban individual assignment to
instance variables.

The formal description of these approaches, perhaps by the technique of
powerdomains [Plo76], is a topic for future research.

Chapter 6

Conclusions

Nothing will ever be attempted, if all possible objec-
tions must be first overcome.

Samuel Johnson

In approaching the task of defining the formal semantics of an object-
oriented programming language, this thesis has provided semantic definitions
for the features of object-oriented languages that differentiate them from other
languages. In Chapter 3, the essential characteristics of object-oriented lan-
guages were defined: objects and object identity. Additionally, it was shown
that two different and equally valid ways were available to organise objects:
classes and prototypes.

In Chapter 4, the organisation of classes was considered, and various in-
heritance schemes described. It was shown that single inheritance, and the
graph and linear forms of multiple inheritance, do not require any changes to
the semantic domains used in Chapter 3, indicating that these particular organ-
isations of classes are largely syntactic in nature. However, the tree form of
inheritance requires different object structure.

130

Chapter 5 described an object-oriented control structure, the block, and
showed how it could be used, in conjunctionwithmessage passing, as a general
control structure.

The aim of this thesis was to show that an apposite model of object-oriented
languages existed, and that this model is both conceptually simple and suffi-
ciently general. It is the author’s belief that this aim has been met. A secondary
aim was to use a semantic study to investigate the choices available to the de-
signer of an object-oriented language, and assist her in making design deci-
sions. By describing in detail the differences between classes and prototypes,
between single and multiple inheritance, between graph, linear and tree inher-
itance, and between the various kinds of block, it is hoped that the secondary
aim has also been fulfilled. All that remains is to point to future directions of
research.

6.1 Future Research
An obvious follow-on from this work is to devise proof rules for a similar lan-
guage, and show that these rules are sound with respect to denotational seman-
tics [Ame86b]. This would be the next step on the route to proving properties
about programs in the language. Furthermore, because of the strong connec-
tion between object-oriented systems and persistence, it is important to study
how the semantics of programs and data change as programs are modified.

A fertile area for research concerns the definition of type systems for object-
oriented languages. The language presented in this thesis types objects rather
than storage cells, a fundamentally different approach to that used in conven-
tional languages. Although conventional typing mechanisms have been used
for object-oriented languages, it is the author’s belief that adding conventional
type declaration facilities to the language presented in this thesis will sub-
stantially decrease the ability to re-use code by inheritance. It remains to be
seen whether useful and convenient typing schemes can be found for such
languages.

Appendix A

The Direct Semantics of a
Complete Language

In relation to their systemsmost systematizers are like
a man who builds an enormous castle and lives in a
shack close by; theydo not live in their own enormous
systematic buildings.

Sören Kierkegaard

This appendix gathers together the definitions in Chapters 3 and 4, together
with the semantics of closures as in §5.1, into a single language. The following
selection of features has been made (see the appropriate sections for further
explanation):

• Booleans, integers, symbols and nil are available as literals

• a separate class of indexable objects is available (§3.10.4)

132

• objects that represent classes are present in the object memory; instances
are created by sending messages to the appropriate class (§3.11)

• there are no class or global variables (§3.11.1)

• multiple inheritance (the “tree” form) is used (§4.3.3)

• methodsmay be designated as public, private or subclass-visible (§4.4.1)

• statically-bound sends to parent classes or to self are available (§4.4.2)

• closures and the value primitive are provided (§5.1)

A.1 Abstract Syntax

Program′ = Class map′

Class map′ = Class name m Class body′

Class body′ :: Instvars : Id-set
Methods : Method map′
Parents : Parent classes

Method map′ = Selector m Method desc′

Parent classes = Class name-set

Method desc′ :: Method : Method body′ ∪ Primitive method
Type : Method type

Method type = PRIVATE, SUBV, PUBLIC

Method body′ :: Params : Ulist(Id)
Temps : Id-set
Expr : Expression′

Expression′ = Expression list′ ∪ Assignment′ ∪ Object name
∪Message′ ∪ Super send ∪ Self send ∪ Literal object′

Expression list′ :: Expression′∗

Assignment′ :: LHS : AVar id
RHS : Expression′

AVar id = Temp id∪ Inst var id

Var id = Arg id∪ Temp id∪ Inst var id

Arg id :: Id

Temp id :: Id

Inst var id :: Id

Object name′ = Var id∪ SELF

Message′ :: Rcvr : Expression′
Sel : Selector

Args : Expression′∗

Super send :: Sel : Selector
Args : Expression′∗

Parent : Class name

Self send :: Sel : Selector
Args : Expression′∗

Literal object′ = Block body′ ∪ Int literal∪ Bool literal
∪ Symbol literal∪ Nil literal

Block body′ :: Params : Ulist(Id)
Temps : Id-set
Expr : Expression′

Int literal ::

Bool literal ::

Symbol literal = Selector

Nil literal ::

Selector = Unary∪ Binary ∪ Keyword

Unary :: Id

Binary :: +, −, ∗, /, <,…

Keyword :: Id∗

nargs :Selector →
nargs(sel) cases sel of

mk-Unary() → 0
mk-Binary() → 1
mk-Keyword(ids)→ len ids
end

A.2 Context Conditions

CCEnv :: Instvars : Id-set
Params : Id-set
Temps : Id-set

Inherited selectors : Class name m Selector-set
My selectors : Selector-set

WFProgram :Program′ →
WFProgram class map

non circular(class map)
∧ ∀class id ∈ dom class map ⋅

let par = parents(class id, class map) in
let inherited selectors =

p sv selectors(p, class map) | p ∈ par in
let my sels = local selectors(class id, class map) in
let θ = mk-CCEnv(, , , inherited selectors, my sels) in
par ⊂ dom class map
∧ non conf licting methods(class id, par, class map)
∧WFClass class map(class id) θ

non circular :Class map′ →
non circular(class map)

∀classes ⊆ dom class map ⋅
classes ≠ ⇒
∃c1 ∈ classes ⋅
∀c2 ∈ classes ⋅ c2 ⁄∈ parents(c1, class map)

parents :Class name × Class map′ → Parent classes
parents(class, class map) Parents(class map(class))

non conf licting methods :Class name ×
Class name-set × Class map′ →

non conf licting methods(c, parents, class map)
∀sel ∈ conf licting selectors(parents, class map) ⋅

sel ∈ local selectors(c, class map)

conf licting selectors :Class name-set × Class map′ →
Selector-set

conf licting selectors(classes, class map)
let sel set = sv selectors(p, class map) | p ∈ classes in
sel ∈ sel set |

∃c1, c2 ∈ classes ⋅
c1 ≠ c2 ∧ sel ∈ sv selectors(c1, class map)

∧ sel ∈ sv selectors(c2, class map)

local selectors :Class name × Class map′ → Selector-set
local selectors(class id, class map)

domMethods(class map(class id))

sv selectors :Class name × Class map′ → Selector-set
sv selectors(class id, class map)

all sels type(class id, class map, PUBLIC)
∪ all sels type(class id, class map, SUBV)

all sels type :Class name × Class map′ × PUBLIC, SUBV →
Selector-set

all sels type(class id, class map, type)
let others = local sels type(class id, class map, type)

| t ∈ Method type − t in
inh sels type(class id, class map, type) − others

∪ local sels type(class id, class map, type)

local sels type :Class name × Class map′ ×Method type→
Selector-set

local sels type(class id, class map, type)
sel ∈ local selectors(class id, class map)

| Type(Methods(class map(class id))) = type

inh sels type :Class name × Class map′ × PUBLIC, SUBV →
Selector-set

inh sels type(class id, class map, type)
all sels type(p, class map, type) |

p ∈ parents(class id, class map)

all selectors :Class name × Class map′ → Selector-set
all selectors(class id, class map)

all sels type(class id, class map, t) | t ∈ Method type

WFClass :Class body′ → CCEnv→
WFClass mk-Class body′(iv, meths,) θ

∀sel ∈ dommeths ⋅
let m = Method(meths(sel)) in
m ⁄∈ Primitive method

⇒ nargs(sel) = lenParams(m)
∧WFMethod m µ(θ, Instvars iv)

WFMethod :Method body′ → CCEnv→
WFMethod mk-Method body′(params, temps, expr) θ

let θ′ = µ(µ(θ, Params rngparams), Temps temps) in
WFExpression expr θ′

WFExpression :Expression′ → CCEnv →
WFExpression mk-Expression list′(exprs) θ

lenexprs ≥ 1 ∧ ∀e ∈ rngexprs ⋅WFExpression e θ

WFExpression mk-Assignment′(id, rhs) θ
WFExpression rhs θ ∧
cases id of
mk-Inst var id(iv)→ iv ∈ Instvars(θ)
mk-Temp id(t) → t ∈ Temps(θ)
end

WFExpression mk-Inst var id(id) θ id ∈ Instvars(θ)

WFExpression mk-Arg id(id) θ id ∈ Params(θ)

WFExpression mk-Temp id(id) θ id ∈ Temps(θ)

WFExpression SELF θ true

WFExpression mk-Message′(rcvr, sel, args) θ
WFExpression rcvr θ
∧ lenargs = nargs(sel)
∧ ∀arg ∈ rngargs ⋅WFExpression arg θ

WFExpression mk-Super send(sel, args, parent) θ
lenargs = nargs(sel)
∧ parent ∈ dom Inherited selectors(θ)
∧ sel ∈ Inherited selectors(θ)(parent)
∧ ∀arg ∈ rngargs ⋅WFExpression arg θ

WFExpression mk-Self send(sel, args) θ
lenargs = nargs(sel)
∧ sel ∈ My selectors(θ) ∪ rng Inherited selectors(θ)
∧ ∀arg ∈ rngargs ⋅WFExpression arg θ

WFExpression mk-Block body′(params, temps, expr) θ
let θ′ = µ(µ(θ, Params Params(θ)∪rngparams∪Temps(θ)),

Temps temps) in
WFExpression expr θ′

WFExpression l θ true
for l ∈ Int literal∪Bool literal∪Symbol literal∪Nil literal

A.3 Processed Abstract Syntax

Program = Class map

Class map = Class name m Class body

Class body :: Instvars : Instvar desc
Methods : Method map

Instvar desc :: Local instvars : Id-set
Inherited : Class name m Instvar desc

Method map = Selector m Method desc

Method desc :: Method : Method body∪ Primitive method
Type : Method type

Original class : Access path

Access path = Ulist(Class name)

Method body :: Params : Ulist(Id)
Temps : Id-set
Expr : Expression

Expression = Expression list∪ Assignment∪ Object name
∪Message ∪ Static send ∪ Literal object

Expression list :: Expression∗

Assignment :: LHS : AVar id
RHS : Expression

Message :: Rcvr : Expression
Sel : Selector

Args : Expression∗

Static send :: Sel : Selector
Args : Expression∗
Class : Class name

Literal object = Block body∪ Int literal∪ Bool literal
∪ Symbol literal∪ Nil literal

Block body :: Params : Ulist(Id)
Temps : Id-set
Expr : Expression

A.4 Processing functions

PProgram :Program′ → Program
PProgram p

class id PClass class id p | class id ∈ domp

PClass :Class name → Class map′ → Class body
PClass class id class map

mk-Class body(inst vars(class id, class map),
all methods of (class id, class map))

inst vars :Class name × Class map′ → Instvar desc
inst vars(class id, class map)

mk-Instvar desc(Instvars(class map(class id)),
p inst vars(p, class map) |

p ∈ parents(class id, class map))

all methods of :Class name × Class map′ → Method map
all methods of (class id, class map)

local meths type(class id, class map, PRIVATE)
∪ all meths type(class id, class map, PUBLIC)
∪ all meths type(class id, class map, SUBV)

local meths type :Class name × Class map′ ×Method type →
Method map

local meths type(class id, class map, type)
let methods = Methods(class map(class id)) in
sel mk-Method desc(

PMethod Method(methods(sel)) class id, type, [])
| Type(methods(sel)) = type

all meths type :Class name × Class map′ ×Method type →
Method map

all meths type(class id, class map, type)
let other types = Method type − type in
let others = dom local meths type(class id, class map, t)

| t ∈ other types in
(others inh meths type(class id, class map, type))

† local meths type(class id, class map, type)

inh meths type :Class name × Class map′ ×Method type →
Method map

inh meths type(class id, class map, type)
∗ methods inherited f rom(p, class map, type)

| p ∈ parents(class id, class map)

methods inherited f rom :Class name × Class map′
×Method type → Method map

methods inherited f rom(class id, class map, type)
let meth map = all meths type(class id, class map, type) in
sel prepend class(class id, meth map(sel))

| sel ∈ dommeth map

prepend class :Class name ×Method desc → Method desc
prepend class(c, mdesc)

µ(mdesc, Original class [c] Original class(mdesc))

PMethod : (Method body′ ∪ Primitive method)→ Class name →
(Method body∪ Primitive method)

PMethod m this class
if m ∈ Primitive method
then m
else let mk-Method body′(params, temps, expr) = m in

mk-Method body(params, temps,
PExpression expr this class)

PExpression :Expression′ → Class name → Expression
PExpression expr this class

cases expr of
mk-Expression list′(e) → mk-Expression list(i

PExpression e(i) this class
| i ∈ dome)

mk-Assignment′(l, r) → mk-Assignment(l,
PExpression r this class)

mk-Message′(r, s, a) → mk-Message(
PExpression r this class,
s, PExpression list a this class)

mk-Super send(s, a, p) → mk-Static send(s,
PExpression list a this class, p)

mk-Self send(s, a) → mk-Static send(s,
PExpression list args this class,

this class)
mk-Block body′(p, t, e)→ mk-Block body(p, t,

PExpression e this class)
others expr
end

A.5 Semantic Domains

Object memory = Oop m Object

Object :: Class : Oop
Body : Object body

Object body = Plain object∪ Primitive object

Plain object :: Local instvars : Id m Oop
Inherited : Class name m Plain object

Primitive object = ∪ Symbol∪ Indexable object
∪ Class obj∪ Block den

Indexable object = m Oop

Symbol = Selector

Class obj :: Name : Class name
Instvars : Instvar desc

Block den = Method response

class :Oop × Object memory → Class name
class(oop,σ)

let class oop = Class(σ (oop)) in Name(body(class oop,σ))

body :Oop ×Object memory → Object body
body(oop,σ) Body(σ (oop))

inst var : Id ×Oop × Access path × Object memory → Oop
inst var(id, oop, path,σ)

Local instvars(sub body(oop, path,σ))(id)

sub body :Oop × Access path × Object memory → Plain object
sub body(oop, path,σ) sub obj(body(oop,σ), path)

sub obj :Plain object × Access path→ Plain object
sub obj(pobj, path)

if path = [] then pobj
else sub obj(Inherited(pobj)(hdpath), tlpath)

update inst var : Id ×Oop × Oop × Access path × Object memory
→ Object memory

update inst var(id, oop, value, path,σ)
σ † oop µ(σ (oop), Body

update body(body(oop,σ), id, value, path))

update body :Plain object × Id × Oop × Access path→
Plain object

update body(pobj, id, value, path)
if path = []
then µ(pobj, Local instvars

Local instvars(pobj) † id value)
else let inh = Inherited(pobj) in

let new part =
update body(inh(hdpath), id, value, tlpath) in

µ(pobj, Inherited inh † hdpath new part)

A.6 Meaning Functions

Program den = Class name m Class den

MProgram :Program → Program den
MProgram p

let pd = c MClass body p(c) pd | c ∈ domp in
pd

Class den = Selector m Method den

Method den = Public method∪ Private method

Public method :: Meth : Method response

Private method :: Meth : Method response

Method response = Oop × (Oop∗) × Object memory →
Oop × Object memory

SEnv :: PD : Program den
Class : Access path

MClass body :Class body → Program den→ Class den
MClass body mk-Class body(iv, meths) pd

sel MMethod meths(sel) pd | sel ∈ dommeths

MMethod :Method desc → Program den→ Method den
MMethod mm pd

let m = Method(mm) in
let md = if m ∈ Primitive method

then m
else let ρ = mk-SEnv(pd, Original class(mm)) in

MMethod body m ρ
in

if Type(mm) ∈ PRIVATE, SUBV
then mk-Private meth(md)
else mk-Public meth(md)

Primitive method = Method response

DEnv :: Rcvr : Oop
Args : Id m Oop

Temps : Id m Oop

update vars :DEnv × Id m Oop × Id m Oop→ DEnv
update vars(δ , params, temps)

µ(µ(δ , Params params), Temps temps)

update temp : Id × Oop ×DEnv → DEnv
update temp(id, value, δ)

µ(δ , Temps Temps(δ) † id value)

MMethod body :Method body→ SEnv → Method response
MMethod body mk-Method body(params, temps, expr) ρ

λrcvr, args,σ ⋅
let bindings = bind args(params, args) in
let δ = mk-DEnv(rcvr, bindings, initialise(temps)) in
let (result, δ ′,σ′) = MExpression expr ρδσ in
(result,σ′)

bind args :Ulist(Id) × Oop ∗ → Id m Oop
bind args(f ormals, actuals)

f ormals(i) actuals(i) | i ∈ dom f ormals

initialise : Id-set→ Id m Oop
initialise(vars) id NILOOP | id ∈ vars

MExpression :Expression → SEnv → DEnv →
Object memory →

Oop ×DEnv ×Object memory
MExpression mk-Expression list(exprs) ρδσ

let (oop, δ ′,σ′) = MExpression hdexprs ρδσ in
if lenexprs = 1 then (oop, δ ′,σ′)
elseMExpression mk-Expression list(tlexprs) ρδ ′σ ′

MExpression mk-Assignment(id, rhs) ρδσ
let (result, δ ′,σ′) = MExpression rhs ρδσ in
cases id of
mk-Temp id(t) → (result, update temp(t, result, δ ′),σ′)
mk-Inst var id(iv)→ result, δ ′,

update inst var(iv, Rcvr(δ ′),
result, Class(ρ),σ′)

end

MExpression mk-Inst var id(id) ρδσ
(inst var(id, Rcvr(δ), Class(ρ),σ), δ ,σ)

MExpression mk-Arg id(id) ρδσ (Args(δ)(id), δ ,σ)

MExpression mk-Temp id(id) ρδσ (Temps(δ)(id), δ ,σ)

MExpression SELF ρδσ (Rcvr(δ), δ ,σ)

MExpression mk-Message(rcvr, sel, arglist) ρδσ
let (rcvr oop, δ ′,σ′) = MExpression rcvr ρδσ in
let (actuals, δ ′′,σ′′) = MExpression list arglist ρδ ′σ ′ in
let (result,σ′′′) = perf orm(sel, PD(ρ), rcvr oop, actuals,σ′′,

rcvr = SELF) in
(result, δ ′′,σ′′′)

MExpression list :Expression∗ → SEnv →
DEnv → Object memory →

Oop∗ × DEnv × Object memory
MExpression list el ρδσ

if el = []
then ([], δ ,σ)
else let (val, δ ′,σ′) = MExpression hdel ρδσ in

let (val list, δ ′′,σ′′) = MExpression list tl el ρδ ′σ ′ in
([val] val list, δ ′′,σ′′)

perf orm : Selector × Program den ×
Oop ×Oop∗ × Object memory ×

→ Oop ×Object memory
perf orm(sel, pd, rcvr, args,σ , f rom self)

let class = class(rcvr,σ) in
if sel ∈ public selectors(class, pd)
∨ f rom self ∧ sel ∈ private selectors(class, pd)

then method(sel, class, pd)(rcvr, args,σ)
else message not understood(sel, pd,

class, rcvr, args,σ , f rom self)

private selectors :Class name × Program den→ Selector-set
private selectors(class, pd)

sel ∈ dompd(class) | pd(class)(sel) ∈ Private meth

public selectors :Class name × Program den→ Selector-set
public selectors(class, pd)

sel ∈ dompd(class) | pd(class)(sel) ∈ Public meth

method :Selector × Class name × Program den→
Method response

method(sel, class, pd) Meth(pd(class)(sel))

MExpression mk-Static send(sel, args, class) ρδσ
let (actuals, δ ′,σ′) = MExpression list args ρδσ in
let (result,σ′′)

= method(sel, class, PD(ρ))(Rcvr(δ ′), actuals,σ′) in
(result, δ ′,σ′′)

MExpression mk-Int literal(int) ρδσ
let (oop,σ′) = f ind or make immutable(int, Integer,σ) in
(oop, δ ,σ′)

f ind or make immutable (value:Primitive object,
class:Class name) obj:Oop

ext wr σ : Object memory
post σ (obj) = mk-Object(class, value)∧ (σ = σ ∨ obj σ = σ)

MExpression mk-Bool literal(bool) ρδσ
(if bool then TRUEOOP else FALSEOOP, δ ,σ)

MExpression mk-Symbol literal(s) ρδσ
let (oop,σ′) = f ind or make immutable(s,Symbol,σ) in
(oop, δ ,σ′)

MExpression b ρδσ (for b ∈ Block body)
let obj = mk-Object(Closure, MBlock body b ρδ) in
let (closure,σ′) = create(obj,σ) in
(closure, δ , store′)

MBlock body :Block body→ SEnv → DEnv → Block den
MBlock body mk-Block body(params, temps, expr) ρδ

λclosure, args,σ ⋅
if lenparams ≠ lenargs
then block arg error(ρ, δ , closure, args,σ)
else let δ ′ = update vars(δ ,

Temps(δ) † Params(δ)
† bind args(params, args),

initialise(temps)) in
let (result, δ ′′,σ′) = MExpression expr ρδ ′σ in
(result,σ′)

A.7 Primitives
A.7.1 General primitives

class primitive :Primitive method
class primitive λrcvr, ,σ ⋅ (Class(σ (rcvr)),σ)

oopOf primitive :Primitive method
oopOf primitive

λrcvr oop, ,σ ⋅
f ind or make immutable(oop of (rcvr oop), Integer,σ)

where

oop of ∈ Oop m

perf orm primitive :Primitive method
perf orm primitive

λrcvr, cons(sel oop, args),σ ⋅
let sel = body(sel oop,σ) in
if sel ∈ Symbol ∧ nargs(sel) = lenargs
then perf orm(sel, pd, rcvr, args,σ , false)
else perf orm error(sel oop, sel, pd, rcvr, args,σ)

A.7.2 Arithmetic

plus primitive :Primitive method
plus primitive

λrcvr, [arg],σ ⋅
let addend = body(rcvr,σ) in
let augend = body(arg,σ) in
if augend ∈
then f ind or make immutable(addend+augend, Integer,σ)
else plus error(rcvr, arg,σ)

A.7.3 Primitives on Class objects

new primitive :Primitive method
new primitive

λclass oop, ,σ ⋅
let instvars = Instvars(body(class oop,σ)) in
let new obj = make obj(instvars) in
create(mk-Object(Name(body(class oop,σ)),

new obj),σ)

create (obj:Object) new oop:Oop
ext wr σ : Object memory
post new oop ∉ dom σ ∧ σ = σ ∪ new oop obj

make obj : Instvar desc → Plain object
make obj(iv desc)

let local = id NILOOP | id ∈ Local instvars(iv desc) in
let inh = c make obj(Inherited(iv desc)(c))

| c ∈ dom Inherited(iv desc) in
mk-Plain object(local, inh)

A.7.4 Block primitives

value primitive :Primitive method
value primitive

λclosure, args,σ ⋅ body(closure,σ)(closure, args,σ)

A.7.5 Primitives on Indexable objects

new indexable primitive :Primitive method
new indexable primitive

λclass oop, [size oop],σ ⋅
let size = body(size oop,σ) in
if size ∈
then let body = i NILOOP | i ∈ 0,… , size − 1 in

let class name = Name(body(class oop,σ)) in
create(mk-Object(class name, body),σ)

else create error(class oop, size oop,σ)

size primitive :Primitive method
size primitive

λobj, [],σ ⋅
f ind or make immutable(maxdombody(obj,σ),

Integer,σ)

at primitive :Primitive method
at primitive

λobj, [index oop],σ ⋅
let index = body(index oop,σ) in
if index ∈ ∧ in bounds(obj, index,σ)
then (body(obj,σ)(index),σ)
else bound error(obj, index oop,σ)

atput primitive :Primitive method
atput primitive

λobj, [index oop, value],σ ⋅
let index = body(index oop,σ) in
if index ∈ ∧ in bounds(obj, index,σ)
then let new obj = Body(σ (obj)) † index value in

(obj,σ † obj µ(σ (obj), Body new obj))
else bound error(obj, index oop,σ)

in bounds :Oop × ×Object memory →
in bounds(obj, index,σ) index ∈ dombody(obj,σ)

grow primitive :Primitive Method
grow primitive

λobj, [size oop],σ ⋅
let size = body(size oop,σ) in
if size ∈ ∧ body(obj,σ) ∈ Indexable object
then (obj, grow(obj, size,σ))
else grow error(obj, size oop,σ)

grow :Oop × × Object memory → Object memory
grow(oop, size,σ)

let new body = if (size − 1) ∈ dombody(oop,σ)
then 0,… , size − 1 body(oop,σ)
else i NILOOP | i ∈ 0,… , size − 1

† body(oop,σ)
in

σ † oop µ(σ (oop), Body new body)

Appendix B

The Continuation Semantics
of a Complete Language

This appendix extends the language of the previous appendix to include con-
tinuation blocks (§5.2). Some changes are necessary to semantic domains, and
all meaning functions are altered to use continuations. The context conditions
and pre-processing functions of the previous appendix still apply.

B.1 Changes to Abstract Syntax

Literal object′ = Block body′ ∪ Cont body′ ∪ Int literal
∪ Bool literal∪ Symbol literal∪ Nil literal

Cont body′ :: Params : Ulist(Id)
Temps : Id-set
Expr : Expression′

B.2 New Context Condition

156

WFExpression mk-Cont body′(params, temps, expr) θ
let θ′ = µ(µ(θ, Params

Params(θ)∪ rngparams∪ Temps(θ)),
Temps temps) in

WFExpression expr θ′

B.3 Changes to Processed Abstract Syntax

Literal object = Block body∪ Cont body∪ Int literal
∪ Bool literal∪ Symbol literal∪ Nil literal

Cont body :: Params : Ulist(Id)
Temps : Id-set
Expr : Expression

B.4 Changes to Processing Functions

PExpression :Expression′ → Class name → Expression
PExpression expr this class

cases expr of
…
mk-Cont body′(p, t, e)→ mk-Cont body(p, t,

PExpression e this class)
others expr
end

B.5 Changes to Semantic Domains

Method response = MCont→
Oop × (Oop∗) × Object memory →

Oop × Object memory

MCont = Oop ×Object memory → Oop ×Object memory

ECont = Oop × DEnv × Object memory → Oop ×Object memory

LCont = (Oop∗) × DEnv × Object memory →
Oop × Object memory

ignore :MCont→ ECont
ignore(ν) λr, δ ,σ ⋅ ν(r,σ)

insert :DEnv → ECont→ MCont
insert (δ)(ε) λr,σ ⋅ ε(r, δ ,σ)

B.6 Meaning Functions

Program den = Class name m Class den

MProgram :Program → Program den
MProgram p

let pd = class id MClass body p(class id) pd
| class id ∈ domp in

pd

Class den = Selector m Method den

Method den = Public method∪ Private method

Public method :: Meth : Method response

Private method :: Meth : Method response

SEnv :: PD : Program den
Class : Access path

MClass body :Class body → Program den→ Class den
MClass body mk-Class body(, meths) pd

sel MMethod meths(sel) pd | sel ∈ dommeths

MMethod :Method desc → Program den→ Method den
MMethod mm pd

let m = Method(mm) in
let md = if m ∈ Primitive method

then m
else let ρ = mk-SEnv(pd, Original class(mm)) in

MMethod body m ρ
in

if Type(mm) ∈ PRIVATE, SUBV
then mk-Private meth(md)
else mk-Public meth(md)

Primitive method = Method response

DEnv :: Rcvr : Oop
Params : Id m Oop
Temps : Id m Oop
Cont : MCont

update temp : Id × Oop ×DEnv → DEnv
update temp(id, value, δ)

µ(δ , Temps Temps(δ) † id value)

update vars :DEnv × Id m Oop × Id m Oop→ DEnv
update vars(δ , params, temps)

µ(µ(δ , Params params), Temps temps)

MMethod body :Method body→ SEnv → Method response
MMethod body mk-Method body(params, temps, expr) ρ

λν ⋅ λrcvr, args,σ ⋅
let bindings = bind args(params, args) in
let δ = mk-DEnv(rcvr, bindings, initialise(temps), ν) in
MExpression expr ρδσ ignore(ν)

bind args :Ulist(Id) × Oop ∗ → Id m Oop
bind args(f ormals, actuals)

f ormals(i) actuals(i) | i ∈ dom f ormals

initialise : Id-set→ Id m Oop
initialise(vars) id NILOOP | id ∈ vars

MExpression :Expression → SEnv → DEnv →
Object memory →

ECont→ Oop ×Object memory
MExpression mk-Expression list(exprs) ρδσε

MExpression hdexprs ρδσ
λoop, δ ′,σ′ ⋅
if lenexprs = 1 then ε(oop, δ ′,σ′)
elseMExpression mk-Expression list(tlexprs) ρδ ′σ ′ε

MExpression mk-Assignment(id, rhs) ρδσε
MExpression rhs ρδσ

λresult, δ ′,σ′ ⋅
cases id of
mk-Temp id(t) → ε(result, update temp(t, result, δ ′),σ′)
mk-Inst var id(iv)→ ε result, δ ′,

update inst var(iv, Rcvr(δ ′),
result, Class(ρ),σ′)

end

MExpression mk-Inst var id(id) ρδσε
ε(inst var(id, Rcvr(δ), Class(ρ),σ), δ ,σ)

MExpression mk-Arg id(id) ρδσε ε(Args(δ)(id), δ ,σ)

MExpression mk-Temp id(id) ρδσε ε(Temps(δ)(id), δ ,σ)

MExpression SELF ρδσε ε(Rcvr(δ), δ ,σ)

MExpression mk-Message(rcvr, sel, arglist) ρδσε
MExpression rcvr ρδσ

λrcvr oop, δ ′,σ′ ⋅
MExpression list arglist ρδ ′σ ′
λactuals, δ ′′,σ′′ ⋅
perf orm(sel, PD(ρ), rcvr oop, actuals,σ′′,

rcvr = SELF, insert δ ′′ε)

MExpression list :Expression∗ → SEnv →
DEnv → Object memory → LCont→

Oop∗ × Object memory
MExpression list el ρδσκ

if el = []
then κ ([], δ ,σ)
elseMExpression hd el ρδσ

λr, δ ′,σ′ ⋅
MExpression list tl el ρδ ′σ ′

λrl, δ ′′,σ′′ ⋅
κ ([r] rl, δ ′′,σ′′)

perf orm : Selector × Program den ×
Oop × (Oop∗) × Object memory
× ×MCont→ Oop × Object memory

perf orm(sel, pd, rcvr, args,σ , f rom self, ν)
let class = class(rcvr,σ) in
if sel ∈ public selectors(class, pd)
∨ (f rom self ∧ sel ∈ private selectors(class, pd))

then method(sel, class, pd)ν(rcvr, args,σ)
else message not understood(sel, pd, class, rcvr, args,

σ , f rom self, ν)

private selectors :Class name × Program den→ Selector-set
private selectors(class, pd)

sel ∈ dompd(class) | pd(class)(sel) ∈ Private meth

public selectors :Class name × Program den→ Selector-set
public selectors(class, pd)

sel ∈ dompd(class) | pd(class)(sel) ∈ Public meth

method :Selector × Class name × Program den→
Method response

method(sel, class, ρ) Meth(pd(class)(sel))

MExpression mk-Static send(sel, args, class) ρδσε
MExpression list args ρδσ

λactuals, δ ′,σ′ ⋅
method(sel, class, PD(ρ))(insert δ ′ε)(Rcvr(δ ′), actuals,σ′)

MExpression mk-Int literal(int) ρδσε
let (oop,σ′) = f ind or make immutable(int, Integer,σ) in
ε(oop, δ ,σ′)

f ind or make immutable (value:Primitive object,
class:Class name) obj:Oop

ext wr σ : Object memory
post σ (obj) = mk-Object(class, value)∧ (σ = σ ∨ obj σ = σ)

MExpression mk-Bool literal(bool) ρδσε
ε(if bool then TRUEOOP else FALSEOOP, δ ,σ)

MExpression mk-Symbol literal(s) ρδσε
let (oop,σ′) = f ind or make immutable(s,Symbol,σ) in
ε(oop, δ ,σ′)

MExpression b ρδσε (for b ∈ Block body)
let obj = mk-Object(Closure, MBlock body b ρδ) in
let (closure,σ′) = create(obj,σ) in
ε(closure, δ ,σ′)

MExpression c ρδσε (for c ∈ Cont body)
let obj = mk-Object(Continuation, MCont body c ρδ) in
let (closure,σ′) = create(obj,σ) in
ε(closure, δ ,σ′)

MBlock body :Block body→ SEnv → DEnv → Block den
MBlock body mk-Block body(params, temps, expr) ρδ

λν ⋅ λclosure, args,σ ⋅
if lenparams ≠ lenargs
then block arg error(ρ, δ , closure, args,σ , ν)
else let δ ′ = update vars(δ ,

Temps(δ) † Params(δ)
† bind args(params, args),

initialise(temps)) in
MExpression expr ρδ ′σ (ignore ν)

MCont body :Cont body→ SEnv → DEnv → Block den
MCont body mk-Cont body(params, temps, expr) ρδ

λν ⋅ λclosure, args,σ ⋅
if lenparams ≠ lenargs
then block arg error(ρ, δ , closure, args,σ , ν)
else let δ ′ = update vars(δ ,

Temps(δ) † Params(δ)
† bind args(params, args),

initialise(temps)) in
MExpression expr ρδ ′σ ignore(Cont(δ ′))

B.7 Primitives
B.7.1 General primitives

class primitive :Primitive method
class primitive λν ⋅ λrcvr, ,σ ⋅ ν(Class(σ (rcvr)),σ)

oopOf primitive :Primitive method
oopOf primitive

λν ⋅ λrcvr oop, ,σ ⋅
ν(f ind or make immutable(oop of (rcvr oop), Integer,σ))

where

oop of ∈ Oop m

perf orm primitive :Primitive method
perf orm primitive

λν ⋅ λrcvr, cons(sel oop, args),σ ⋅
let sel = body(sel oop,σ) in
if sel ∈ Symbol ∧ nargs(sel) = lenargs
then perf orm(sel, pd, rcvr, args,σ , false, ν)
else perf orm error(sel oop, sel, pd, rcvr, args,σ , ν)

B.7.2 Arithmetic

plus primitive :Primitive method
plus primitive

λν ⋅ λrcvr, [arg],σ ⋅
let addend = body(rcvr,σ) in
let augend = body(arg,σ) in
if augend ∈
then ν(f ind or make immutable(addend + augend,

Integer,σ))
else plus error(rcvr, arg,σ , ν)

B.7.3 Block primitives

value primitive :Primitive method
value primitive

λν ⋅ λclosure, args,σ ⋅ body(closure,σ)ν(closure, args,σ)

B.7.4 Primitives on Class objects

new primitive :Primitive method
new primitive

λν ⋅ λclass oop, ,σ ⋅
let instvars = Instvars(body(class oop,σ)) in
let new obj = make obj(instvars) in
let class name = Name(body(class oop,σ)) in
ν(create(mk-Object(class name, new obj),σ))

B.7.5 Primitives on Indexable objects

new indexable primitive :Primitive method
new indexable primitive

λν ⋅ λclass oop, [size oop],σ ⋅
let size = body(size oop,σ) in
if size ∈
then let body = i NILOOP | i ∈ 0,… , size − 1 in

let class name = Name(body(class oop,σ)) in
ν(create(mk-Object(class name, body),σ))

else create error(class oop, size oop,σ , ν)

size primitive :Primitive method
size primitive

λν ⋅ λobj, [],σ ⋅
ν(f ind or make immutable(maxdombody(obj,σ),

Integer,σ))

at primitive :Primitive method
at primitive

λν ⋅ λobj, [index oop],σ ⋅
let index = body(index oop,σ) in
if index ∈ ∧ in bounds(obj, index,σ)
then ν(body(obj,σ)(index),σ)
else bound error(obj, index oop,σ , ν)

atput primitive :Primitive method
atput primitive

λν ⋅ λobj, [index oop, value],σ ⋅
let index = body(index oop,σ) in
if index ∈ ∧ in bounds(obj, index,σ)
then let new obj = Body(σ (obj)) † index value in

ν(obj,σ † obj µ(σ (obj), Body new obj))
else bound error(obj, index oop,σ , ν)

in bounds :Oop × ×Object memory →
in bounds(obj, index,σ) index ∈ dombody(obj,σ)

grow primitive :Primitive Method
grow primitive

λν ⋅ λobj, [size oop],σ ⋅
let size = body(size oop,σ) in
if size ∈ ∧ body(obj,σ) ∈ Indexable object
then ν(obj, grow(obj, size,σ))
else grow error(obj, size oop,σ , ν)

grow :Oop × ×Object memory → Object memory
grow(oop, size,σ)

let new body = if (size − 1) ∈ dombody(oop,σ)
then 0,… , size − 1 body(oop,σ)
else i NILOOP | i ∈ 0,… , size − 1

† body(oop,σ)
in

σ † oop µ(σ (oop), Body new body)

Appendix C

Summary of Notation

Here is a list of VDM symbols used in this thesis with which the reader may
not be familiar.

[type] type∪ nil
x-set (finite) set type constructor
cards cardinality of set s
a : : c1: t1,… a is a composite type,

with components c1 of type t1, …
µ(a, c v) the composite value a, updated at c to v
x m y map type constructor from x to y
x m y one-one mapping from x to y
1 2,… mapping from 1 to 2,…
domm the domain of map m
rngm the range (codomain) of map m
s m map m restricted to domain s
s m map m with set s removed from the domain

the empty set or empty map
† map overwite operator
x∗ sequence type constructor
[a, b,…] the sequence a, b,…
len s the number of elements in sequence s

168

dom s the indices of sequence s (= 1,… , lens)
rng s the set of elements in sequence s
s1 s2 sequences s1 and s2 concatenated
hd s the head (car) of sequence s
tl s the tail (cdr) of sequence s
, , 1 booleans, natural numbers,

natural numbers without zero

Appendix D

Index to Types and Functions

D.1 Index to Types
Access path, 94, 140
Arg id, 34, 134
Assignment, 34, 141
Assignment′, 134
AVar id, 34, 61, 134

Binary, 76, 135
Block body, 113, 141
Block body′, 134
Block den, 114, 121, 145
Bool literal, 51, 134

CCEnv, 74, 81, 84, 107, 135
Class body, 32, 55, 71, 95, 140
Class body′, 82, 100, 133
Class den, 36, 103, 146, 158
Class map, 33, 140
Class map′, 133
Class obj, 59, 60, 145

170

Class var id, 61
Cont body, 157
Cont body′, 121, 156
Context, 128
Conventional method, 65

Delegated method, 65
DEnv, 38, 66, 122, 125, 147, 159

ECont, 119, 121, 158
ExitV, 125
Expression, 34, 55, 79, 140
Expression′, 78, 106, 134
Expression list, 34, 140
Expression list′, 134

Indexable object, 57, 145
Inst var id, 34, 134
Instvar desc, 94, 140
Int literal, 35, 134

Keyword, 76, 135

LCont, 121, 158
Literal object, 35, 51, 53, 113, 141, 157
Literal object′, 120, 134, 156

MCont, 121, 158
Message, 35, 141
Message′, 134
Method body, 33, 65, 140
Method body′, 133
Method den, 36, 65, 103, 121, 125, 146, 158
Method desc, 71, 79, 95, 101, 140
Method desc′, 79, 100, 133
Method map, 71, 79, 95, 140
Method map′, 79, 133

Method response, 103, 146, 157
Method type, 100, 133

New indexable object, 55, 57
New object, 35
Nil literal, 135

Object, 27, 59, 144
Object body, 27, 144
Object memory, 26, 61, 125, 128, 144
Object name, 35
Object name′, 134

Parent class, 71
Parent classes, 88, 133
Plain object, 27, 55, 65, 93, 144
Primitive classes, 78
Primitive method, 38, 147, 159
Primitive object, 35, 53, 57, 59, 114, 128, 144
Private method, 103, 146, 158
Program, 33, 140
Program′, 133
Program den, 37, 146, 158
Public method, 103, 146, 158

Selector, 75, 135
Self send, 106, 134
SEnv, 37, 55, 94, 146, 158
Static send, 79, 141
Super send, 78, 83, 134
Symbol, 53, 145
Symbol literal, 53, 135

Temp id, 34, 134

Ulist(X), 33
Unary, 75, 135

Var id, 35, 61, 134

D.2 Index to Functions
all instvars, 37
all methods of , 72, 79, 90, 96, 101, 142
all meths type, 102, 142
all selectors, 86, 138
all sels type, 137
ancestors, 85
assign primitive, 54
at primitive, 56, 154, 166
atput primitive, 56, 155, 167

bind args, 39, 148, 160
body, 36, 145

class, 36, 145
class primitive, 152, 164
class var, 62
clone primitive, 69
conf licting selectors, 86, 93, 137
create, 43, 153
cv assign primitive, 62
cv ref erence primitive, 62

delegate, 68

equivalence primitive, 47

f ind attribute, 66
f ind method, 68
f ind or make immutable, 44, 151, 163

grow, 57, 155, 167
grow primitive, 57, 155, 167

ignore, 121, 158
in bounds, 57, 155, 167

inh meths type, 102, 142
inh sels type, 138
inherited inst vars, 72, 85
inherited methods, 72, 87, 96
initialise, 39, 148, 160
insert, 121, 158
inst var, 36, 94, 145
inst vars, 72, 95, 141
is disjoint, 75
is subseq, 89

local meths type, 101, 142
local selectors, 108, 137
local sels type, 137

make new denv id, 125
make obj, 97, 153
MBlock body, 115, 117, 123, 151, 164
MClass body, 38, 97, 147, 159
MCont body, 123, 126, 164
method, 42, 60, 105, 150, 162
methods f rom, 90
methods inherited f rom, 96, 102, 143
MExpression

SELF , 41, 149, 161
mk-Arg id() , 40, 149, 161
mk-Assignment() , 40, 61, 67, 98, 120, 127, 148, 160
mk-Block body() , 114, 122, 151, 163
mk-Bool literal() , 52, 151, 163
mk-Class var id() , 61
mk-Cont body() , 122, 163
mk-Expression list() , 40, 127, 148, 160
mk-Inst var id() , 40, 67, 98, 149, 161
mk-Int literal() , 43, 150, 162
mk-Message() , 41, 68, 105, 149, 161
mk-New indexable object() , 56, 58

mk-New object() , 43, 97
mk-Static send() , 80, 150, 162
mk-Symbol literal() , 53, 151, 163
mk-Temp id() , 40, 149, 161

MExpression list, 41, 149, 161
MMethod, 38, 104, 147, 159
MMethod body

mk-Conventional method() , 67
mk-Delegated method() , 68
mk-Method body() , 39, 122, 125, 148, 160

MProgram, 37, 146, 158

nargs, 76, 135
new indexable primitive, 154, 166
new primitive, 59, 153, 165
non circular, 75, 85, 136
non conf licting instvars, 85
non conf licting methods, 86, 136

oopOf primitive, 48, 152, 164
ordering, 88

parent, 71
parents, 82, 88, 136
PClass, 73, 141
perf orm, 42, 60, 104, 150, 162
perf orm primitive, 53, 152, 165
PExpression, 80, 107, 144, 157
plus primitive, 46, 153, 165
PMethod, 80, 143
PMethods, 79
PProgram, 73, 141
prepend class, 96, 143
private selectors, 104, 150, 162
public selectors, 104, 150, 162

ref erence primitive, 54
remove id, 126

sel to class, 86
selectors, 42, 60, 81
send, 68
size primitive, 154, 166
sub body, 94, 145
sub obj, 94, 145
sv selectors, 137

update body, 95, 146
update class var, 61
update inst var, 36, 94, 145
update temp, 39, 147, 159
update vars, 123, 147, 159

value primitive, 115, 123, 153, 165

WFClass, 75, 93, 138
WFExpression

SELF , 77, 139
mk-Arg id() , 77, 139
mk-Assignment′() , 77, 139
mk-Block body() , 114
mk-Block body′() , 140
mk-Cont body′() , 157
mk-Expression list′() , 76, 138
mk-Inst var id() , 77, 139
mk-Message′() , 77, 139
mk-New object() , 77
mk-Self send() , 107, 139
mk-Super send() , 81, 87, 139
mk-Temp id() , 77, 139

WFMethod, 76, 138
WFProgram, 75, 81, 84, 89, 92, 103, 108, 136

Bibliography

[ABC+83] M. P. Atkinson, P. J. Bailey, K. J. Chisholm, W. P. Cockshott,
and R. Morrison. An approach to persistent programming. The
Computer Journal, 26(4):360–365, November 1983.

[AdBKR86] P. America, J. de Bakker, J. Kok, and J. Rutten. Operational se-
mantics of a parallel object-oriented language. In Proceedings of
the Thirteenth ACM Symposium on the Principles of Program-
ming Languages, pages 194–208, St. Petersberg Beach, Florida,
January 1986.

[Ado85] Adobe Systems Inc. PostScript Language Reference Manual.
Addison-Wesley, 1985.

[Agh86] G. Agha. ACTORS: A Model of Concurrent Computation in Dis-
tributed Systems. MIT Press, 1986.

[Ame85] P. America. Definition of the programming language POOL-T.
ESPRIT Project 415 document 0091, Philips Research Labora-
tories, September 1985.

[Ame86a] P. America. POOL-T: A parallel object-oriented language. In
A. Yonezawa and M. Tokoro, editors, Object-Oriented Concur-
rent Programming, pages 199–220. MIT Press, 1986.

[Ame86b] P. America. A proof theory for a sequential version of POOL.
ESPRIT Project 415 document 0188, Philips Research Labora-
tories, October 1986.

178

[AW82] E. A. Ashcroft and W. W. Wadge. R/ for semantics. ACM Trans-
actions on Programming Languages and Systems, 4(2):283–294,
April 1982.

[BDMN73] G. M. Birtwistle, O.-J. Dahl, B. Myhrhaug, and K. Nygaard. Sim-
ula Begin. Input Two-Nine, 1973.

[BI82] A. H. Borning and D. H. H. Ingalls. Multiple inheritance in
Smalltalk-80. In Proceedings of National Conference on Arti-
ficial Intelligence, pages 234–237, Pittsburgh PA, 1982.

[BJ82] D. Bjørner and C. B. Jones. Formal Specification and Software
Development. Prentice-Hall, 1982.

[BKK+86] D. G. Bobrow, K. Kahn, G. Kiczales, L. Masinter, M. Stefik, and
F. Zdybel. CommonLoops: Merging Lisp and object-oriented
programming. ACM SIGPLAN Notices, 21(11):17–29, Novem-
ber 1986. Proc. OOPSLA.

[Bla83] A. P. Black. Exception handling: The case against. Technical
Report 82-01-02, University of Washington, Computer Science
Department, 1983.

[Bor77] A. H. Borning. ThingLab—An object-oriented system for build-
ing simulations using constraints. In Proceedings of the Fifth
InternationalJoint Conference Artificial Intelligence, pages 497–
498, Cambridge, Mass., 1977.

[Bor81] A. H. Borning. The programming language aspects of ThingLab,
a constraint-oriented simulation laboratory. ACM Transactions
on Programming Languages and Systems, 3(4):353–387, Octo-
ber 1981.

[BS83] D. G. Bobrow and M. Stefik. The LOOPS manual. Technical
report, Xerox PARC, December 1983.

[Cot84] I. D. Cottam. Extending Pascal with one-entry/multi-exit proce-
dures. Technical report, Department of Computer Science, Uni-
versity of Manchester, December 1984.

[Cox86] B. J. Cox. Object Oriented Programming: An Evolutionary Ap-
proach. Addison-Wesley, 1986.

[Cri84] F. Cristian. Correct and robust programs. IEEE Transactions on
Software Engineering, SE-10(2):163–174, March 1984.

[CWB86] P. J. Caudill and A. Wirfs-Brock. A third generation Smalltalk-
80 implementation. ACM SIGPLAN Notices, 21(11):119–130,
November 1986. Proc. OOPSLA.

[Dah87] O.-J. Dahl. Object-oriented specification. In P. Wegner and
B. Shriver, editors, Research Directions in Object-Oriented Pro-
gramming, chapter 16, pages 561–576. MIT Press, 1987.

[DG87] L. G. DeMichiel and R. P. Gabriel. The Common Lisp Object
System: An overview. In J. Bézivin, J.-M. Hullot, P. Cointe, and
H. Lieberman, editors, Proceedings of the 1987 European Con-
ference on Object-Oriented Programming, volume 276, pages
151–170. Springer-Verlag, Paris, June 1987.

[Don77] J. E. Donahue. Locations considered unnecessary. Acta Infor-
matica, 8:221–242, 1977.

[Fab74] R. S. Fabry. Capability-based addressing. Comm. ACM,
17(7):403–412, July 1974.

[GR83] A. Goldberg and D. Robson. Smalltalk-80: The Language and
its Implementation. Addison-Wesley, 1983.

[GS82] L. J. Guibas and J. Stolfi. A language for bitmap manipulation.
ACM Transactions on Graphics, 1(3):191–214, July 1982.

[Hew79] C. Hewitt. Control structure as patterns of passing messages. In
P. H. Winston and R. H. Brown, editors, Artificial Intelligence:
AnMIT Perspective, volume 2, pages 433–465.MIT Press, 1979.

[HN87] B. Hailpern and V. Nguyen. A model for object-based inher-
itance. In P. Wegner and B. Shriver, editors, Research Direc-
tions in Object-Oriented Programming, chapter 6, pages 147–
164. MIT Press, 1987.

[Hoa74] C. A. R. Hoare. Monitors: an operating system structuring con-
cept. Comm. ACM, 17(10):549–557, October 1974.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-
Hall International, 1985.

[Ing78] D. H. H. Ingalls. The Smalltalk-76 programming system: Design
and implementation. pages 9–16, Tucson, Arizona, 1978.

[Ing83] D. H. H. Ingalls. The evolution of the Smalltalk Virtual Ma-
chine. In G. Krasner, editor, Smalltalk-80: Bits of history, words
of advice, pages 9–28. Addison-Wesley, 1983.

[Jon86] C. B. Jones. Systematic Software Development Using VDM.
Prentice-Hall International, 1986.

[KC86] S. N. Khoshafian and G. P. Copeland. Object identity. ACM SIG-
PLAN Notices, 21(11):406–416, November 1986. Proc. OOP-
SLA.

[LGFT86] D. M. Lewis, D. R. Galloway, R. J. Francis, and B. W. Thom-
son. Swamp: A fast processor for Smalltalk-80. ACM SIGPLAN
Notices, 21(11):131–139, November 1986. Proc. OOPSLA.

[Lie86a] H. Lieberman. Concurrent object-oriented programming in Act
1. In A. Yonezawa andM. Tokoro, editors,Object-Oriented Con-
current Programming, pages 9–36. MIT Press, 1986.

[Lie86b] H. Lieberman. Using prototypical objects to implement shared
behavior in object oriented systems. ACM SIGPLAN Notices,
21(11):214–223, November 1986. Proc. OOPSLA.

[Mas86] I. A. Mason. The Semantics of Destructive Lisp, volume 5 of
CSLI Lecture Notes. Center for the Study of Language and In-
formation, 1986.

[Mey87] B. Meyer. Eiffel: Programming for reusability and extendibility.
ACM SIGPLAN Notices, 22(2):85–94, February 1987.

[Moo86] D. A. Moon. Object-oriented programming with Flavors. ACM
SIGPLANNotices, 21(11):1–8, November 1986. Proc. OOPSLA.

[Plo76] G. D. Plotkin. A powerdomain construction. SIAM Journal on
Computing, 5:452–487, 1976.

[RC86] J. Rees and W. Clinger (eds). Revised3 report on the algorith-
mic language Scheme. ACM SIGPLAN Notices, 21(12):37–79,
December 1986.

[Ren82] T. Rentsch. Object oriented programming. ACM SIGPLAN No-
tices, 17(9):51–57, September 1982.

[SCB+86] C. Schaffert, T. Cooper, B. Bullis, M. Kiliam, and C. Wilpolt. An
introduction to Trellis/Owl. ACM SIGPLAN Notices, 21(11):9–
16, November 1986. Proc. OOPSLA.

[Sch78] R. W. Scheifler. A denotational semantics of CLU. Technical Re-
port MIT/LCS/TR-201, MIT Laboratory for Computer Science,
May 1978.

[Sch86] D. A. Schmidt. DenotationalSemantics: AMethodology for Lan-
guage Development. Allyn and Bacon, 1986.

[Sho79] J. F. Shoch. An overview of the programming language
Smalltalk-72. ACM SIGPLAN Notices, 14(9):64–73, September
1979.

[Smi82] B. C. Smith. Reflection and semantics in a procedural language.
Technical Report MIT/LCS/TR-272, MIT Laboratory for Com-
puter Science, January 1982.

[Sny85] A. Snyder. Object-oriented programming for Common Lisp.
Technical Report ATC-85-1, Application Technology Center,
Hewlett-Packard Labs, July 1985.

[Sny86a] A. Snyder. CommonObjects: An overview. ACM SIGPLAN
Notices, 21(10):19–28, October 1986.

[Sny86b] A. Snyder. Encapsulation and inheritance in object-oriented pro-
gramming languages. ACM SIGPLAN Notices, 21(11):38–45,
November 1986. Proc. OOPSLA.

[Sny87] A. Snyder. Inheritance and the development of encapsulated soft-
ware components. In P. Wegner and B. Shriver, editors, Research
Directions in Object-Oriented Programming, chapter 7, pages
165–188. MIT Press, 1987.

[Sto77] J. E. Stoy. Denotational Semantics: The Scott-Strachey Ap-
proach to Programming Language Theory. MIT Press, 1977.

[Str86] B. Stroustrup. The C++ Programming Language. Addison-
Wesley, 1986.

[Str87] B. Stroustrup. What is “object-oriented programming”? In
J. Bézivin, J.-M. Hullot, P. Cointe, and H. Lieberman, edi-
tors, Proceedings of the 1987 European Conference on Object-
Oriented Programming, volume 276, pages 51–70. Springer-
Verlag, Paris, June 1987.

[SUH86] A. D. Samples, D. Ungar, and P. Hilfinger. SOAR: Smalltalk
without bytecodes. ACM SIGPLAN Notices, 21(11):107–118,
November 1986. Proc. OOPSLA.

[Ten73] R. D. Tennent. Mathematical semantics of SNOBOL4. In Pro-
ceedings of the First ACM Symposium on the Principles of Pro-
gramming Languages, pages 95–107, Boston, Massachusetts,
1973.

[Ten77] R. D. Tennent. Language design methods based on semantic
principles. Acta Informatica, 8:97–112, 1977.

[Ten81] R. D. Tennent. Principles of Programming Languages. Prentice-
Hall, 1981.

[The83] D. G. Theriault. Issues in the design and implementation of act
2. Memo. 728, MIT Lab. for Artificial Intelligence, June 1983.

[Tou86] D. Touretzky. The Mathematics of Inheritance Systems. Morgan
Kaufmann/Pitman, Los Altos, California, 1986.

[Uni80] United States Department of Defense. The Programming Lan-
guage Ada: Reference Manual, volume 106 of Lecture Notes in
Computer Science. Springer-Verlag, 1980.

[Weg86] P. Wegner. Perspectives on object-oriented programming. Tech-
nical Report CS-86-25, Department of Computer Science, Brown
University, December 1986.

[Wir83] N. Wirth. Programming in Modula-2. Springer-Verlag, 1983.

[WM80] D. Weinreb and D. Moon. Flavors: Message passing in the Lisp
machine. Memo. 602, MIT Lab. for Artificial Intelligence, 1980.

[Wol86] M. Wolczko. Specifications of four garbage collectors. Internal
report, University of Manchester, Dept. of Computer Science,
1986.

[Wol87] M. Wolczko. Semantics of Smalltalk-80. In J. Bézivin, J.-M.
Hullot, P. Cointe, and H. Lieberman, editors, Proceedings of the
1987 European Conference on Object-Oriented Programming,
Lecture Notes in Computer Science, volume 276, pages 108–120.
Springer-Verlag, Paris, June 1987.

[Yel87] P. M. Yelland. Denotational semantics for reflection in a proce-
dural language. Unpublished manuscript, 1987.

