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Abstract

This paper considers a number of ways in which concur-
rent programs may be expressed within an object-oriented
framework. It goes on to describe work investigating the
expression of highly parallel programs in a conventional
object-oriented language (Smalltalk-80). The relevance
of this work to a new parallel object-oriented system is
discussed. An implementation of an ‘eager’ evaluator
is described, together with a ‘throttling’ mechanism cap-
able of limiting the generation of concurrent processes. A
system for suspending all processes performing a paral-
lel computation is discussed. Finally, further work in in-
vestigating debugging environments for concurrent object-
oriented systems is outlined.

Concurrent Object-Oriented Systems

There has been an increasing interest in recent years in
what is called object-oriented programming, accompanied
by a diversification of opinion. There seems to be little
agreement about what is meant by the term ‘object’, or
whether a particular programming language or program-
ming style is truly ‘object-oriented’. There has also been
an increased interest in using object-oriented programming
techniques as the basis for expressing concurrent solutions
to a wide range of problems, with the aim of harnessing
highly parallel computers [YT87b].

Object-Oriented Programming

Some general principles about object-oriented program-
ming can be observed. At least some of the computation
is expressed in terms of objects sending messages from
one to another. Objects encapsulate some ‘state’ or a ‘data
structure’, together with the only available mechanisms for

∗A modified version of this paper was published in The Computer
Journal, 32(4), Oct. 1989, pp.341-350.

changing (or enquiring about) that state. In order to dis-
cover or modify the state of some object, a suitable mes-
sage must be sent to that object (the receiver of the mes-
sage). The action (or method ) performed by the receiver
on the receipt of a message is entirely its own concern:
other objects need not know or care how a particular ob-
ject chooses to implement a certain function.

Most object-oriented languages, Simula [BDMN73] be-
ing the first, have a notion of objects being instances of
classes. All instances of a class have the same function-
ality, while each instance has separate state. This allows
‘code’ held within the class to be shared between many
instances of that class. Several advantages can be identi-
fied: code is located in just one place, thus saving space
and allowing modifications to be made readily and in a
controlled manner.

Many languages, including Simula and Smalltalk-
80 1 [GR83], C++ [Str86] and Objective-C [Cox86] take
this notion further, where classes are arranged in an in-
heritance tree. An instance inherits functionality from its
class, as well as all superclasses of that class. Methods
defined in the class at the root of the tree are inherited by
all classes. A class may have several subclasses; function-
ality common to several classes may be represented by a
common superclass, which is then specialised differently
by different subclasses. This approach encourages the re-
use of code; when a new class is added to the system, it
may inherit functionality from a similar class, and only
functionality specific to that class need be added.

However, the single-inheritance mechanism is a little re-
strictive; in many cases, a clear separation of functionality
into a strict hierarchy cannot be achieved. Some languages
permit classes to inherit properties from more than one su-
perclass directly, so that the hierarchy of classes becomes a
directed acyclic graph, rather than a rooted tree. This mul-
tiple inheritance mechanism permits objects which inherit

1Smalltalk-80 is the latest version of a series of languages named
Smalltalk [Ing83]. For brevity, Smalltalk-80 is referred to simply as
Smalltalk throughout this paper.
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large amounts of disparate functionality to be construc-
ted rapidly. Such a mechanism has been added to Small-
talk [BI82] and similar mechanisms are available in Lisp-
based object systems, including Flavors [Moo86], Com-
monLoops [BKK+86] and CLOS [DG87].

Concurrency

Because of this model of discrete objects communicating
with one another, the object-oriented style has been con-
sidered a suitable basis for the exploitation of parallelism.
Here there are three different approaches.

In the first approach, message sending is like a proced-
ure call, where control passes from the sender object to
the receiver object when the message is sent, and returns
when the message has been processed. However, the pro-
cedure call is dynamically bound, so that the call address is
determined at run-time, rather than at compile-time. Pro-
cesses may be objects, but not all objects are processes.
The objects are extremely fine-grained, and an instance of
class Character, for example, is quite reasonable. Small-
talk [GR83] and Trellis/Owl [SCB+86] are examples of
such languages. Processes will synchronise using conven-
tional structures, such as semaphore objects or monitor ob-
jects. Generally, such schemes will have a high process
overhead, and are best suited to a moderate-to-large level
of granularity in the expression of concurrency [MK87].

In the second approach, objects are regarded as concur-
rently executable program modules, with internal activity
starting when the object is created, and continuing after a
message is sent. Typically, messages are only accepted at
explicitly defined times. Not all computation is expressed
in terms of message sending and other means of expressing
the functionality within objects are required. Languages
such as POOL-T [Ame85] fit into this category. Clearly,
in this approach, objects are necessarily quite large, be-
cause of the process scheduling overhead. There is little
point in having, say, an integer or character as an independ-
ent object. Again, such schemes will have a high process
overhead, and are suited to a moderate level of granularity.

Finally, the actors [Agh86] approach is midway between
the two approaches mentioned above. The sender of a
message can proceed concurrently without waiting for the
receiver of the message; messages are queued at the re-
ceiver. If several messages are sent, then many objects
may be active. Typically, all computation is expressed in
terms of communicating actors. This permits the expres-
sion of fine-grained parallelism, as well as coarser-grained
parallelism, as the process overhead is expected to be quite
small. Since all message-sending is potentially concurrent,
explicit ‘serializers’ are required.

Actor Languages

One problem with traditional superclass inheritance, such
as that provided by Smalltalk, is a lack of separation

between inherited implementation, and inherited externally-
observable behaviour [Sny86]. These aspects lie on differ-
ent levels of abstraction within a system. The first of these
is at a level of detail only of interest internally, while the
second represents the important functionality visible to the
users of a class. For example, in Smalltalk, there is no en-
forced separation between methods corresponding to mes-
sages intended to be sent from outside the local part of the
class hierarchy, those intended to be sent only within this
part of the hierarchy, and those intended to be used only
within a particular class. This leads to a lack of encap-
sulation in the class hierarchy. A subclass frequently de-
pends on the exact implementation of a feature in a super-
class; re-implementing the superclass may require many
of its subclasses to be modified as well. Some languages,
such as POOL-T [Ame87], side-step this issue, omitting
superclass inheritance altogether and using only the class-
instance mechanism.

Another aspect which limits the ability to express paral-
lelism in languages with superclass inheritance is the prob-
lem of what to do when an object sends a message to it-
self. This ability is widely used in object-oriented sys-
tems. If all objects are independent computational units,
the interpretation of a message send to self is unclear and,
if the message is sent using a synchronous communication
mechanism, immediately leads to deadlock.

An alternative to the class-instance mechanism is the
delegation approach. Here, each object may have its own
functionality, but also knows about other objects to which
it may delegate responsibility (proxies) when it is unable
to respond to a message itself. A proxy may be able to re-
spond to the message on behalf of its client, or may have to
pass the message onto another proxy. Clearly, new func-
tionality may be added on a per-object basis, by simply
adding new code which responds to particular messages.
Delegation can also be provided as well as inheritance, as
in the Actra system [TLP86].

The idea of prototypical objects is often used in sys-
tems with delegation rather than inheritance, such as
Act 1 [Lie87a]. A new object is created by cloning an
existing object in the system. The existing object becomes
the new object’s proxy. Initially, this new object has no
additional functionality; new functionality can be added
later.

Several languages combine the notion of delegation and
prototypes, including Act 1 [Lie87a] and Act 3 [AH87].
Such Actor systems have considerably more expressive
power than languages with a class hierarchy, and more
flexibility in the way in which a new application is con-
structed. For example, it is possible to construct a con-
ventional superclass hierarchy using prototypical objects
in a straightforward manner, while the opposite case is im-
possible to implement [Lie86].

Actor systems have some advantages in a parallel
object-oriented environment. The delegation mechanism
sends a message to its proxy, rather than requiring a search
of the class hierarchy which is ‘hard-wired’ into the in-
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terpreter. This increases the number of potential actions
which may be performed concurrently, as the actors are
linked only by cause-and-effect. Furthermore, the objects
may more readily move between processors. Nevertheless,
a unique address is still required for each object. Efficient
implementations of the delegation and prototyping mech-
anisms may prove to be difficult, especially in a loosely-
coupled parallel computer. Finally, at present, there seems
to be little experience of building large-scale applications
in actor systems, and it is not yet clear how useful the extra
flexibility achieved by delegation will be in practice.

Smalltalk

Smalltalk is a programming language entirely expressed
in terms of the object-oriented model. Everything in
the Smalltalk system is an object, and all computation is
expressed in terms of message sending. The Smalltalk
language is embedded in an environment which encour-
ages reuse of code through the inheritance of functionality
defined in classes. A single hierarchy of classes is nor-
mally used, although a limited multiple inheritance scheme
is available. The environment is persistent, with objects
coming into being on demand and lasting as long as ne-
cessary (be it microseconds or months). When no longer
required, the space occupied by objects is recovered by
garbage collection. Smalltalk also provides a mechanism
for the construction of user interface components, and a
range of programming tools (including browsers, debug-
gers and editors) which are constructed using those com-
ponents.

A brief introduction to Smalltalk syntax is included in
an appendix. Further details of the Smalltalk language can
be found in [GR83], and the programming environment is
described in [Gol83].

In order to ensure a highly portable implementation, the
Smalltalk system is divided into two distinct parts [GR83].
The virtual image contains all the objects which make up
the Smalltalk system, and is completely portable between
implementations. The virtual image contains a class Com-
piler, instances of which can convert methods written by
programmers into sequences of instructions called byte-
codes. These bytecodes are contained in instances of class
CompiledMethod.

The virtual machine consists of a mixture of hardware
and software which actually performs operations on the
objects in the image. It includes an interpreter for the in-
struction set generated by the compiler. This instruction
set includes, for example, send and return instructions,
conditional and unconditional jumps, and stacking oper-
ations. Some bytecodes cause primitive operations to be
performed; these include integer and floating point arith-
metic, tests for equivalence and creation of new instances.
Some memory management functions are required as well,
including the allocation of memory space to new objects,
and the recovery of space left by objects no longer re-
quired. This latter function implies a need for a garbage

collection scheme.

This separation into two parts maximises the portabil-
ity of the Smalltalk system. Most of the functionality is
in the virtual image, and only the virtual machine need be
re-implemented when moving Smalltalk to new hardware.
Unfortunately, straightforward implementations of the vir-
tual machine are slow [McC83, FS83, UP83], and soph-
isticated implementation techniques need to be used in or-
der to get adequate performance [Deu83, CWB86, Mir87],
even on today’s powerful single-user workstations [DS84].
The work described in later sections is entirely implemen-
ted using the Smalltalk system, and no virtual machine
modifications are required. This has the advantage that a
high-speed commercial implementation (based on [DS84])
can be used.

ConcurrentSmalltalk

Smalltalk has limited built-in support for concurrency. It
supports Processes and Semaphores as primitive types.
Other conventional inter-process communication and pro-
tection mechanisms, such as SharedQueues and critical
regions, are implemented in terms of these primitives.
However, the processor scheduler (part of the virtual
machine) implements a naı̈ve non-preemptive scheduling
policy, with limited support for re-scheduling within a par-
ticular priority level. Further, once a high-priority process
is running, no lower priority process will run until the high
priority process suspends or terminates. For these reasons,
the normal Smalltalk system contains only a few processes,
and typical applications using concurrency do not create
more than a few tens of processes.

ConcurrentSmalltalk [YT87a] is an extension of Small-
talk. It adds asynchronous message sends to the synchron-
ous sends already available in Smalltalk. New types of ob-
ject (atomic objects) are also introduced. Only one pro-
cess can execute any of the methods associated with an
atomic object at any one time. Messages sent to an atomic
object are executed serially in a FIFO manner, with a single
context created for each activation. A special interpreta-
tion is provided for message sends to self, which ensures
that they execute within the same context.

ConcurrentSmalltalk is implemented by adding new
bytecodes to the Smalltalk virtual machine, together with
modifications to the compiler. The processor scheduling
algorithm has also been modified to permit time-slicing, so
that large numbers of processes can execute in a pseudo-
concurrent manner. Thus, ConcurrentSmalltalk requires
significant extensions to the virtual machine implement-
ation. Unfortunately, high-performance Smalltalk virtual
machines are complex pieces of software, and this ap-
proach is quite expensive in terms of the effort involved
when experimenting.
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The MUSHROOM Project

The aim of the MUSHROOM2 project [HWW87] is to con-
struct and evaluate a high performance interactive object-
oriented system that actively encourages information shar-
ing between different users, and is distributed transparently
between many machines.

A new object-oriented language, MUST, based on Smalltalk-
80 is being designed [Wol88a]; this includes features to
support tight encapsulation, delegation, multiple inherit-
ance and sharing between different users. This work is
based on a formal analysis of Smalltalk and other object-
oriented languages [Wol87, Wol88b]. The use of advanced
compiler techniques forms a significant part of the invest-
igation. New tools to support the development of large-
scale applications, especially concurrent systems support-
ing multiple users, are also under consideration.

Architectural support for concurrent fine-grain object-
oriented systems is also under investigation. Using
Smalltalk-80 as a model system, a number of architec-
tural aspects have been extensively simulated. These in-
clude caching strategies, instruction sets, garbage collec-
tion [Wil86], and hardware support for virtual memory
[WWH87b], dynamic binding and runtime tag checking.
A high-performance object-oriented shared-memory mul-
tiprocessor is currently being designed, based on the sim-
ulation results obtained.

Concurrent Programs in Smalltalk

The aim of the work described here was to investigate pos-
sible mechanisms for expressing solutions to inherently
parallel problems in fine-grain object-oriented languages.
As a Smalltalk implementation with adequate performance
was available, and some experience with developing ap-
plications using this system had already been gained, it
was decided to use Smalltalk as the basis for this invest-
igation. No modification of this Smalltalk virtual machine
could be considered, as source code for the virtual machine
was not available.

Low-level Mechanisms

It was considered that the simple primitives implemen-
ted in classes Semaphore and Process, which are already
present in the Smalltalk system, did not permit a suffi-
ciently abstract approach to the expression of parallel solu-
tions to problems. Consequently, a small number of new
low-level operators to permit the expression of parallelism
in a clean manner were constructed.

The most useful ‘primitive’ used in this work is an
‘eager’ evaluator, implemented as a class Future. A Fu-
ture returns a marker or promise for a result which may
take some time to evaluate. A separate process is created

2The MUSHROOM project is currently supported by the UK Science
and Engineering Research Council, under grant number GR/E/65050.

to calculate the result; in principle, this process could ex-
ecute concurrently with the process which generated the
Future. The Future may be used just like the result (passed
as a parameter, for example) without interaction with the
Future’s process. Only when a message is actually sent
to the Future is it necessary to synchronise the two pro-
cesses. If the Future process has not completed by the time
this message is received, the original process is suspen-
ded. This re-synchronisation is provided transparently by
the Future implementation.

This eager evaluation mechanism has been used in
a number of other object-oriented languages, including
Act 1 [Lie87a]. It has also been used in parallel Lisp-based
languages, such as MultiLisp [Hal85].

The other primitive constructed is a ‘lazy’ evaluator,
implemented as class Lazy. A Lazy only starts executing
when the value is explicitly required. Thus, Lazy provides
a completely demand-driven evaluation strategy, and can
be used, for example, to express potentially infinite se-
quences of results, without requiring infinite machine re-
sources. The ‘lazy’ evaluator also appears in MultiLisp.

The implementation of Future and Lazy in Smalltalk uses
the block mechanism. Blocks represent deferred execu-
tion, which may be created, passed around as paramet-
ers, forked as processes or evaluated directly. Blocks are
widely used to implement control structures within Small-
talk. Textually, blocks are contained within rectangular
brackets ‘[ ]’. For example:

aBlock ← [10 factorial].

assigns a block, capable of being evaluated to give the res-
ult 3628800, to variable aBlock. At a later time, aBlock
(which is an object) may be sent the message value:

answer ← aBlock value.

This causes the block to be evaluated, and the numerical
result assigned to answer. This could also have been ex-
pressed thus:

answer ← [10 factorial] value.

In order to express this computation using Futures, the fol-
lowing statement could have been used:

answer ← [10 factorial] futureValue.

This assigns a Future to answer, while spawning a process
to compute the final value. This process is made runnable
immediately. Only when the value of answer is required
will the Future be forced to completion; for example, by
displaying the result as a string.

Transcript show: (answer printString).

Of course, the Future may have already completed by the
time the answer is required.

It is worth pointing out that Future and Lazy repres-
ent just two points in a spectrum of possible evaluation
strategies. A Future represents the maximum concurrency
available, while a Lazy is merely deferred serial execution.
For this reason, Futures are much more useful in this work.
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Other ‘less-eager’ evaluators (executing at lower priority,
perhaps) are also possible, but these are not considered
here.

Note also that the Future and Lazy constructs do not
provide any protection from interference between activ-
ations of blocks with side-effects. Careful consideration
by the programmer is necessary to ensure that a program
is correct regardless of the activation order of the Futures.

More Complex Constructs

Based on Future, a number of more complex structures can
be built. For example, blocks can accept arguments, so
parameters can be passed to executing Futures. This ex-
ample assigns a value equal to ten times the product of the
arguments to answer.

answer ← [:x :y | 10 * x * y] futureValue: 3 value: 4.

Sometimes it is necessary to force a Future or Lazy to com-
pletion, without actually using the value. A touch method,
understood by all objects, provides this feature. Examples
of the use of touch are given later.

A further convenience is the ability to start any number
of computations in parallel, but force all of them to com-
plete before further actions are performed. This can be
implemented in terms of Future and touch, and is conveni-
ently encapsulated in class ParallelEvaluation. This allows
a number of blocks to be explicitly executed in parallel.
For example:

[10 factorial] inParallelWith: [20 factorial].
Transcript show: ’Finished both factorials’.

This computes the two factorials in parallel, forcing both to
completion before the following expression is evaluated.

In many cases, however, some operation is performed on
the results of the blocks in the ParallelEvaluation. A general
mechanism for dyadic operations (the simplest non-trivial
form) is provided:

difference ← [10 factorial]
parallelPerform: #diff: with: [20 factorial].

As before, this example computes both blocks in parallel.
Then, it sends the message diff: to the result of the first
block, with the result of the second block as an argument.
The overall result, assigned to difference, is the absolute
difference of the two values.

The parallelPerform:with: method is quite cumbersome,
however, and for frequently used operations (particularly
arithmetic and logical operations), additional methods are
provided:

sum ← [10 factorial] parallelAdd: [20 factorial].

This example computes the sum of the two factorials.
Finally, two complete examples are presented. The first

is a single method for computing fibonacci numbers, using
a doubly-recursive algorithm. This is implemented as a
method in class Integer.

fibonacci
(self <= 1)

ifTrue: ["self]
ifFalse: ["[(self - 1) fibonacci]

parallelAdd: [(self - 2) fibonacci]]

Note how some arithmetic operations are expressed in the
same block, and thus executed serially.

The second example3 is more lengthy. It uses a paral-
lel recursive sub-division algorithm to perform the integra-
tion of an arbitrary function [RR78], expressed as a Small-
talk block of one argument. The algorithm uses trapezium
approximations to the area under the curve described by
the function. It recursively divides the area into smaller
trapezia, until the error computed when doing this is smal-
ler than a specified tolerance.

A class BinaryIntegrationencapsulates this algorithm, and
defines an instance variable referring to the block repres-
enting the function to be integrated. New instances of Bin-
aryIntegration, capable of integrating a particular function,
are created using this class method:

function: aBlock"self new function: aBlock

This uses a private instance method (not shown), also
called function:, to initialize the instance variable.

The basic recursive step of the algorithm is represented by
the following method:

areaBetween: left and: right estimate: anEstimate toler-
ance: aTolerance

| mid areaLeft areaRight newEstimate |
mid ← (left + right) / 2.
areaLeft ←

[self trapeziumBetween: left and: mid] futureValue.
areaRight ←

[self trapeziumBetween: mid and: right] futureValue.
newEstimate ← areaLeft + (areaRight touch).
(anEstimate - newEstimate) abs < aTolerance

ifTrue: ["newEstimate]
ifFalse: ["[self

areaBetween: left
and: mid
estimate: areaLeft
tolerance: (aTolerance / 2)]

parallelAdd: [self
areaBetween: mid
and: right
estimate: areaRight
tolerance: (aTolerance / 2)]]

This method divides the interval between left and right into
two equal parts, and estimates the area for each part us-

3This example is based on an implementation in SISAL [MSA+83]
by John Sargeant, which is in turn based on an implementation in MAD
by Dave Bowen [Bow81].
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ing a trapezium approximation. These two parts are per-
formed in parallel, as they are each Futures. If the differ-
ence between the new estimate and the old estimate for
the same interval is less than the specified tolerance, then
the new estimated value is returned. Otherwise, the same
method is called twice, once for each part. This is per-
formed in parallel, using the parallelAdd: method.

A number of auxiliary methods are provided. The first
of these calculates the area of a trapezium with width given
by left and right, and height given by the value of the func-
tion at those points. Again, the values at the left at right
points are computed in parallel.

trapeziumBetween: left and: right"(right - left) * ([function value: left]
parallelAdd: [function value: right]) / 2

Finally, the following method starts the execution of a
complete calculation. It starts the computation (with a
Future) of an initial estimate of the area, again using the
trapezium approximation. For simplicity, the tolerance is
shown as a constant.

areaBetween: left and: right"self
areaBetween: left
and: right
estimate:

[self trapeziumBetween: left and: right] futureValue
tolerance: 0.01

Thus, as an example, the following code integrates a cubic
polynomial between 0 and 5:

| integration |
integration ← BinaryIntegration

function: [:x| (3*x*x*x) + (2*x*x) + 5].
Transcript cr; show:

(integration areaBetween: 0 and: 5) printString.

Implementation of Future

The key to the implementation of both Future in Small-
talk is the creation of entities which are not descendants of
class Object, unlike all other classes in the system except
Object itself. Consequently, instances of class Future, for
example, will not understand any messages, except those
specifically defined in class Future.

In Smalltalk, there are a small number of messages
which are actually generated by the underlying virtual ma-
chine, rather than being ‘real’ messages sent from an object
within the virtual image. One such message is doesNotUn-
derstand:, which is sent when an object receives a message
where a corresponding method cannot be found in any of
the classes from which that object inherits functionality.
The argument to the message sent by the virtual machine
is the message which was not understood by the original
receiver. The normal use of the doesNotUnderstand: mes-

sage is to signal a runtime error.
In this case, however, a method corresponding to does-

NotUnderstand: is implemented by Future and Lazy. Any
other message send to a Future (similarly for Lazy) will
cause the doesNotUnderstand: message to be sent to that
Future. At this point, the process sending the original mes-
sage waits for the process associated with the Future, as-
suming that the Future’s process has not already completed.
The original message is then forwarded to the resulting ob-
ject, now that it is available. Subsequent messages to the
same Future are forwarded in the same way.

Each Future is created with a Semaphore used to support
the resynchronisation action, and a process which eval-
uates the value promised by the Future. The Semaphore
is signalled when the process is complete, and waited on
when the Future receives the doesNotUnderstand: message.

A similar implementation technique is used for Lazy.
It can be used to provide encapsulation of arbitrary ob-
jects [Pas86], including monitors to ensure consistency
when an object receives messages from different pro-
cesses.

Problems with Future Implementation

Primitives

One problem with using this method of implementing Fu-
ture is that they do not work correctly with ‘primitive’
methods; i.e. methods not really selected by message send-
ing, but directly executed by the underlying virtual ma-
chine. In the following example, which attempts to calcu-
late the product of a factorial and a constant number, the
message ‘*’ is not really sent to the SmallInteger 2; instead,
a primitive is invoked which manipulates fac directly. The
primitive fails, as the arguments are not numbers, and an
unexpected runtime error occurs.

| fac result |
fac ← [10 factorial] futureValue.
result ← 2 * fac.

If the programmer is aware of this problem, explicit touch
operations can be used:

| fac result |
fac ← [10 factorial] futureValue.
result ← 2 * (fac2 touch).

In a better language, primitives would be better disguised;
they would always behave as if a message had really been
sent. It is possible to go some way toward providing this
within Smalltalk, although some primitives, such as be-
come:, seem impossible to encapsulate [Wol88b].

Contexts

Blocks with one argument are often used to form a con-
trol structure equivalent to a ‘DO’ (or ‘for’) loop in other
languages. In the following example, the block is evalu-
ated ten times, once for each element of the array squares.
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The result is an array containing the squares of the first ten
natural numbers.

| squares |
squares ← Array new: 10.
1 to: 10 do: [:each |

squares at: each put: (each * each)].

In some cases, it might be useful to evaluate each activ-
ation of the block concurrently, especially if the calcula-
tion performed in the block was computationally expens-
ive. Such a construct can indeed be implemented, allowing
expressions like that shown below.

| squares |
squares ← Array new: 10.
1 to: 10 parallelDo: [:each |

squares at: each put: (each * each)].

Unfortunately, the ‘obvious’ implementation using a Par-
allelEvaluation fails, as each activation of the block shares
the same context. To fix this, it is necessary to copy the
context for each block; this is done by modifying the value
methods for blocks. Again, there is a small problem here;
the value messages are treated as special cases by the com-
piler for efficiency reasons, so that the message sends are
not interpreted in the expected manner. This requires that
the Smalltalk compiler be modified so as not to generate
these special cases, and then the entire system is recom-
piled to remove any existing use of these special selectors.
This reduces the performance of the system, but seems to
be tolerable in practice.

Scheduling

In the work described here, the standard Smalltalk schedul-
ing mechanisms have been used. Processes at the same pri-
ority run to completion, unless they give up control expli-
citly. However, pre-emption by processes of a higher pri-
ority is possible. This behaviour is unfortunate when con-
structing concurrent programs, but it does not seem to be
possible to improve this without modifications to the vir-
tual machine (as made in ConcurrentSmalltalk [YT87a])
and the virtual image. This problem is exacerbated by
differences between the specified behaviour of the sched-
uler, as defined in [GR83], and the implementation actu-
ally used. An attempt was made to implement an improved
process scheduler within Smalltalk itself4, but this led to
such poor performance that its use was discontinued.

A further problem relates to the difference in dynamic
storage requirements for Future and Lazy. When a Lazy
is created but not started (perhaps because it is later dis-
covered that the result is not required at all), only a small
amount of storage is required, and there is little processor
time wasted. Furthermore, the storage space is rapidly re-
covered by the garbage collector.

Unfortunately, similar behaviour is not exhibited by Fu-
ture. As presently implemented, a Future which is started,

4The improved scheduler was written by Ian Piumarta.

but is subsequently discovered to be superfluous will use
a potentially large amount of both storage space and pro-
cessor time unnecessarily. In an ideal system, it should be
possible for a Future to be stopped and the memory space
recovered immediately, when it is discovered that this part
of the computation is unnecessary. Clearly, it is import-
ant that this action is transparent to the programmer, and
should be part of the functionality of the process scheduler
and garbage collector.

Runtime Control of Parallelism

The amount of parallelism available under different cir-
cumstances seems to vary widely depending on the applic-
ation. Some problems are naturally serial in nature, while
others permit a large number of activities to be performed
concurrently. One problem which appears with the latter
class of algorithms is that they are ‘embarrassingly par-
allel’ [RS87]; if left uncontrolled, they would generate a
large number of concurrent activities or processes.

A large number of concurrently active processes causes
several problems for machines with a limited number of
processing elements. One problem is that each thread will
have some ‘stack’ of activation records associated with it,
and these must be stored. Typical processors will have
facilities to support a few processes in hardware; making
extensive use of many more processes will lead to inef-
ficiencies. With even more processes active, the space
required for the activation records may become a sizable
fraction of the available real memory, and may reduce the
effectiveness of any caches. If a virtual memory system
is used, huge numbers of processes may cause excessive
paging activity. Thus, it is desirable to limit the number
of processes. Note that this is equally important in a serial
implementation of a concurrent programming language.

Having too few processes available also has its limita-
tions. If there are fewer active processes than processors,
then some processors will be unused. Even if the number
of runnable processes is greater than the number of pro-
cessors on average, variations in this number may again
cause some processors to be idle. This may be caused, for
example, by one process being forced to wait for the result
produced by another. For a particular system, there will
be a range of values which are a reasonable compromise
between too many, and too few, processes. Maintaining
the number of runnable processes in this range is some-
times called throttling, and is an important attribute of any
large-scale parallel computer system.

Implementation of Throttling in Smalltalk

In order to investigate the problems of parallelism con-
trol, a throttling mechanism for Futures was provided. To
provide a concurrency control mechanism, a new class
Throttle is created. Instances of this class maintain a count
of the number of currently active processes using this par-
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ticular Throttle, and the maximum number of active pro-
cesses permitted. Every Future is assigned to exactly one
Throttle.

When a new Future is created, a message is sent to the
corresponding throttle to find out if a new process can be
generated. If a new process is permitted, the Throttle in-
crements its count, otherwise the block is executed imme-
diately in the same process as that which created the Fu-
ture. If a separate process was indeed generated, it informs
the Throttle once it has completed, so that the count can be
decremented. Naturally, it is important to ensure all ma-
nipulations of the count inside the Throttle are atomic. This
is managed by ensuring that all the methods performing
these operations are enclosed in a monitor.

In a simple case, a single global instance of Throttle,
called SystemThrottle, is used by all Futures in the system.
This is convenient for most purposes, and analogous to
the single instance of ProcessorScheduler called Processor
used in Smalltalk to represent the (single) physical pro-
cessor. In a more general case, however, several instances
of Throttle might be used, so that separate applications (per-
haps belonging to different users) could be controlled sep-
arately. It might even be possible to consider multiple in-
tercommunicating throttles, perhaps located on different
physical processors.

It should be noted that the throttle setting (the maximum
allowed number of processes) can be varied as the applica-
tion runs. Instances of Throttle understand messages which
increase and decrease the throttle; if an attempt to set the
throttle to a value lower than the current number of active
processes, then no further processes are created and the
new throttle setting takes effect once the number of active
processes has dropped below the threshold. It is even pos-
sible to set a throttle to zero: this implies that no additional
processes are generated and, once existing processes have
completed, all computation is performed serially.

The throttling mechanism described is effective in in-
creasing the efficiency of highly parallel programs using
Futures, even using the standard, uniprocessor Smalltalk
system. For example, the parallel fibonacci method de-
scribed earlier runs several times faster using the throttled
version of the Future implementation, with the throttle set
to 10. This is probably because of reduced use of the ob-
ject memory, even though there is more overhead in the
creation of Futures when throttling is implemented.

The effectiveness of this throttling mechanism on a par-
allel processor has yet to be investigated. Determining an
appropriate throttle setting for a given hardware configur-
ation is a matter for experimentation with a real system.
Nevertheless, it is expected that the ability to control dy-
namically the amount of parallelism on the basis of indi-
vidual applications will prove to be a useful feature of the
MUSHROOM system.

Controlling Processes for Debugging

A second, related use of throttles is that they provide a
single object which can be used to represent an entire pro-
cess group. In particular, a throttle can be used as a con-
venient ‘handle’ for a parallel application for debugging
purposes.

In Smalltalk, an error condition detected by the virtual
machine may be signalled using the doesNotUnderstand:
mechanism discussed previously. The default action is to
create a notifier which is displayed on the screen for the
user. This gives the user some indication of what has gone
wrong, and provides the option of continuing the computa-
tion, abandoning it, or starting a debugger. Similar actions
occur if a program-detected error occurs, a breakpoint is
encountered, or the user deliberately interrupts processing.

In order to permit debugging, the notifier retains the en-
tire activation stack of the process which was interrupted.
As the activation records are objects in the Smalltalk im-
age, they understand various messages, just like any other
object. This makes the implementation of the debugger,
for example, particularly straightforward. By sending the
appropriate messages, the debugger can gain access to each
suspended context, together with the corresponding source
code, permitting modification of variables and recompila-
tion of methods, before potentially restarting the compu-
tation. The use of the Smalltalk debugger is further de-
scribed in [Gol83].

Clearly, a more sophisticated mechanism is required to
permit a collection of processes (perhaps spawned by a
future mechanism) to be debugged. An approach to this
was explored using the throttled Future implementation in
Smalltalk described earlier. Each Future already has a ref-
erence to its associated throttle, and the implementation
of Throttle was modified to retain a reference to each Fu-
ture using this throttle. When a runtime error condition or
user interrupt occurs, the Future associated with the inter-
rupted process can be interrogated to identify its throttle.
This throttle then sends messages to all of its processes to
cause them to suspend themselves. The throttle now has a
reference to all its processes, all of which are suspended,
and can be used as a starting point for a parallel debugging
system. The Smalltalk version of this control mechanism
takes advantage of the uniprocessor nature of the imple-
mentation. In general, however, it is important to provide
a mechanism for supporting this in a parallel processor.

Other Aspects of Parallelism Control

In the implementation described here, no attempt is made
to schedule any particular order of evaluation of Future
evaluators. It is clear that some orders of evaluation will
be more efficient than others, given that a process-switch
operation will always cost some time on any real processor.
Unfortunately, determining which evaluation order is op-
timum is, in general, an NP-complete problem [GLLK79].
Fortunately, it appears that the performance loss caused by
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an inappropriate order of evaluation is less than a factor of
two [Sar87], so that it may well not be worth the expense
of computing an optimum (or near optimum) order.

Another aspect not considered here, but of vital import-
ance in a multiprocessor environment, is managing the
balance of workload between many processing elements.
In an object-oriented framework, it is reasonably straight-
forward to move an object from one machine to another.
However, the real problem is deciding when to move an
object, and to which processor it should be moved. Clearly,
information about the load of each processor is required to
make such decisions; in a realistic system, such informa-
tion is likely to be incomplete and out-of-date.

A number of simulation studies of various aspects of
the performance of an object-oriented multiprocessor sys-
tem are being carried out as part of the MUSHROOM

work [Wil86, WWH87a]. An investigation to discover
suitable heuristics for the dynamic migration of objects is
planned as part of this work. Initially, static distribution
schemes will be considered, to determine suitable group-
ings, with various dynamic mechanisms being based on
the results of these studies. A local implementation of the
Smalltalk virtual machine [Wol84] will be used as a vehicle
for this work.

Conclusions and Future Work

The utility of Future demonstrated by this initial imple-
mentation has suggested that this form of construct would
be a useful addition to the MUSHROOM system. It has also
encouraged the active consideration of other concurrent
object-oriented programming styles to be incorporated into
such a language. The addition of an ‘actor’-type system,
using delegation and prototypical objects is very interest-
ing and will be explored further.

This work has highlighted the requirements for syn-
chronisation and communication mechanisms between
processors in the MUSHROOM system. It has led to con-
sideration of the performance and level of hardware sup-
port required for interprocessor communication, especially
for semaphores. It has also highlighted aspects of the in-
teraction between concurrent processes and the memory
management system in an object-oriented system, espe-
cially the desirability of being able to dispose of (‘garbage-
collect’) unwanted processes which are still executing, in
a transparent manner.

The work on controlling concurrent processes, particu-
larly the ability of Futures to control an application-specific
group of processes, has led to consideration of a frame-
work for the development of tools to aid in the construc-
tion of large-scale concurrent applications. Some work in
this direction is under way. For example, a view mech-
anism which shows a graph of active processes dynamic-
ally evolving as the program runs is currently under con-
struction. Other tools, including a debugger which works
directly with instances of Future and Lazy, are being con-

sidered.
In the longer term, program development tools for other

types of object-oriented programming environments are
of interest. Browsers and debuggers for actor-like sys-
tems [Man87], and reversible interpreters [Lie87b] have
been investigated elsewhere; the relevance of these exper-
iences to the MUSHROOM work will provide useful input to
the project.
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Appendix: Introduction to the Small-
talk Language

Expressions in the Smalltalk language consist of the names
of objects and messages sent to those objects. The result of
an expression is the object answered by the corresponding
method. Thus, the expression:

anArray size.

sends the message size to the object named anArray. The
result will be an object; if anArray is indeed an array of
objects, then the result will be a number representing the
size. Expressions are terminated by full stops ‘.’.

Messages can have one or more parameters associated
with them. Any object can be used as a parameter. For
example:

seventhElement ← anArray at: 7.

sends the message at: to the object named anArray, with the
parameter being the object 7. This example also illustrates
assignment; the resulting object is named seventhElement.

Where more than one parameter is required, the message
selector is distributed, with the arguments placed after each
part of the message selector:

anArray at: 5 put: ’fifth’.

This example sends anArray the message at: put:, with the
first parameter being ‘5’ and the second parameter being
the string ‘fifth’.

In Smalltalk, classes are also objects, and can under-
stand messages. This is used, for example, to create new
instances of classes. Conventionally, the names of classes
have initial capital letters.

somePoint ← Point x: 4 y: 9.

This expression sends the message x: y: to class Point,
which represents positions in two-dimensional space. The
resulting object, which is an instance of class Point with x-
coordinate 4 and y-coordinate 9, is assigned to somePoint.

Round brackets ‘( )’ can be used to enforce the order of
message sending. For example, if pointArray is an array of
points, then the expression:

(pointArray at: 4) x: 12

sets the x-coordinate of the fourth point in pointArray to 12.

Smalltalk methods are defined by stating the message
selector and giving formal parameter names to any argu-
ments. Conventionally, the message selector and paramet-
ers are reproduced in a bold sans-serif font. Optionally,
they are followed by declarations of temporary variables,
zero or more expressions which send messages to vari-
ables representing objects, and zero or more assignments
to variables. The object actually receiving a message can
be accessed as self within the method being executed. The
object returned when a method completes is indicated by
an expression preceded by a vertical arrow ‘"’ symbol.

averageWith: aNumber
| temp |
temp ← self + aNumber."(temp / 2)

This method (assumed to be implemented in class Number)
assigns the sum of the receiver and the parameter aNumber
to the temporary variable temp. The method then answers
with a number obtained by dividing temp by two.
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